Company
Address
City, State
Phone

JOB TITLE Chapter 5 Examples

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

CS2018 Ver 2020.03.10

www.struware.com

STRUCTURAL CALCULATIONS

FOR

Chapter 5 Examples

20' Eave height using MWFRS all heights procedure 20' Eave height using MWFRS <60' procedure

Guide to Wind Load Provisions of ASCE 7-16

Company Address City, State Phone

JOB TITLE Chapter 5 Examples

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

www.struware.com

Code Search

Code:

ASCE 7 - 16

Occupancy:

Occupancy Group =

В **Business**

Risk Category & Importance Factors:

Risk Category =

Wind factor = 1.00 Snow factor = 1.00 1.00

Seismic factor =

Type of Construction:

Fire Rating:

Roof = 0.0 hr Floor = 0.0 hr

Building Geometry:

Roof angle (θ)	4.00 / 12	18.4 deg
Building length (L)	250.0 ft	
Least width (B)	200.0 ft	
Mean Roof Ht (h)	36.7 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

Roof

0 to 200 sf: 20 psf

200 to 600 sf: 24 - 0.02Area, but not less than 12 psf

over 600 sf: 12 psf

Floor:

Typical Floor	50 psf
Partitions	15 psf
Lobbies & first floor corridors	100 psf
Corridors above first floor	80 psf
Balconies (1.5 times live load)	75 psf

Company

Address City, State Phone

JOB TITLE Chapter 5 Examples

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads: ASCE 7-16

Ultimate Wind Speed	115 mph		
Nominal Wind Speed	89.1 mph		
Risk Category	i II		
Exposure Category	С		
Enclosure Classif.	Enclosed Building		
Internal pressure	+/-0.18		
Directionality (Kd)	0.85		
Kh case 1	1.025		
Kh case 2	1.025		
Type of roof	Gable		

Topographic Factor (Kzt)

Tanananh		
Topography		Flat
Hill Height	(H)	80.0 ft
Half Hill Length (Lh)	100.0 ft
Actual H/Lh	=	0.80
Use H/Lh	=	0.50
Modified Lh	=	160.0 ft
From top of crest: x =		50.0 ft
Bldg up/down wind?		downwind

 $K_1 = 0.000$ H/Lh= 0.50 $K_2 = 0.792$ x/Lh = 0.31z/Lh = 0.23 $K_3 = 1.000$

At Mean Roof Ht:

 $Kzt = (1+K_1K_2K_3)^2 = 1.00$

ESCARPMENT

Flexible structure if natural frequency < 1 Hz (T > 1 second).

Gust Effect Factor h = 36.7 ft If building h/B>4 then may be flexible and should be investigated. B = 200.0 ft h/B = 0.18/z (0.6h) = 22.0 ft

Rigid structure (low rise bldg)

G = 0.85 Using rigid structure default

R =

Gf =

0.000

0.000

Rigid Structure Flexible or Dynamically Sensitive Structure Dam

ē =	0.20
ℓ = z _{min} =	500 ft 15 ft
-111111	
C =	0.20
$g_Q, g_v =$	3.4
$L_z =$	461.1 ft
Q =	0.84
I _z =	0.21
G =	0.84

34 1cy $(\eta_1) =$	0.0 Hz				
nping ratio (β) = /b =	0 0.65				
$/\alpha = Vz = N_1 = R_n = N_1$	0.15 103.0 0.00 0.000				
$R_h = R_B = R_L = R_L$	28.282 28.282 28.282	η = η = η =	0.000 0.000 0.000	h =	36.7 ft
g _R =	0.000	•			

Company

Address City, State Phone

JOB TITLE Chapter 5 Examples

JOB NO.	SHEET NO.	
CALCULATED BY		
CHECKED BY		

Enclosure Classification

Test for Enclosed Building:

Ao < 0.01Ag or 4 sf, whichever is smaller

Test for Open Building:

All walls are at least 80% open.

 $Ao \ge 0.8Ag$

Test for Partially Enclosed Building: Predominately open on one side only

	Input			Test	
Ao	500.0	sf	Ao ≥ 1.1Aoi	NO	
Ag	600.0	sf	Ao > 4' or 0.01Ag	YES	
Ag Aoi	1000.0	sf	Aoi / Agi ≤ 0.20	YES	Building is NOT
Agi		sf	·		Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag

Aoi / Agi ≤ 0.20

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Test for Partially Open Building:

A building that does not qualify as open, enclosed or partially enclosed.

(This type building will have same wind pressures as an enclosed building.

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):

0 sf

Unpartitioned internal volume (Vi):

0 cf

Ri = 1.00

Ground Elevation Factor (Ke)

Constant =

Grd level above sea level =

0.0 ft 0.00256

Adj Constant = 0.00256

Ke = 1.0000

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads - MWFRS all h (Except for Open Buildings)

Kh (case 2) =	1.02	h =	36.7 ft	GCpi =	+/-0.18
Base pressure (q _h) =	29.5 psf	ridge ht =	53.4 ft	G =	0.85
Roof Angle (θ) =	18.4 deg	L =	250.0 ft	qi = qh	
ributary area - (h/2)*L:	4588 sf	B =	200.0 ft		

Roof tributary area - (h/2)*L: (h/2)*B: 3670 sf

Ultimate Wind Surface Pressures (psf)

	Wind Normal to Ridge				Wind Parallel to Ridge				
	B/L =	0.80	h/L = 0.18			L/B = 1.25		h/L = 0.15	
Surface	Ср	q_hGC_p	$w/+q_iGC_{pi}$	w/-q _h GCpi	Dist.*	Ср	q_hGC_p	w/ +q _i GC _{pi}	w/ -q _h GC _{pi}
Windward Wall (WW)	0.80	20.1	see tab	le below		0.80	20.1	see tab	le below
Leeward Wall (LW)	-0.50	-12.5	-17.8	-7.2		-0.45	-11.3	-16.6	-6.0
Side Wall (SW)	-0.70	-17.5	-22.9	-12.2		-0.70	-17.5	-22.9	-12.2
Leeward Roof (LR)	-0.57	-14.3	-19.6	-8.9		Ind	cluded in w	indward roof	
Neg Windward Roof pressure	-0.36	-9.1	-14.4	-3.8	0 to h/2*	-0.90	-22.6	-27.9	-17.3
Pos/min Windward Roof press.	0.14	3.4	-1.9	8.8	h/2 to h*	-0.90	-22.6	-27.9	-17.3
					h to 2h*	-0.50	-12.5	-17.8	-7.2
					> 2h*	-0.30	-7.5	-12.8	-2.2
					Min press.	-0.18	-4.5	-9.8	0.8

^{*}Horizontal distance from windward edge

	Windward	Wall Pres	sures at "z" (_l	osf)		Combined WW + LW			
				٧	Windward Wall Normal				
	Z	Kz	Kzt	q_zGC_p	w/+q _i GC _{pi}	w/-q _h GC _{pi}	to Ridge	to Ridge	
•	0 to 15'	0.85	1.00	16.6	11.3	21.9	29.1	27.9	
	20.0 ft	0.90	1.00	17.6	12.3	23.0	30.2	28.9	
	25.0 ft	0.95	1.00	18.5	13.2	23.8	31.0	29.8	
	30.0 ft	0.98	1.00	19.2	13.9	24.5	31.8	30.5	
h=	36.7 ft	1.02	1.00	20.1	14.7	25.4	32.6	31.3	
ridge =	53.4 ft	1.11	1.00	21.7	16.4	27.0	34.2	33.0	

WR WR WR. ww WIND

WIND PARALLEL TO RIDGE

NOTE: See figure in ASCE7 for the application of full and partial loading of the above wind pressures. There are 4 different loading cases.

Parapet			
Z	Kz	Kzt	qp (psf)
0.0 ft	0.85	1.00	0.0

Windward parapet: 0.0 psf (GCpn = +1.5)Leeward parapet: 0.0 psf (GCpn = -1.0)

> Windward roof overhangs (add to windward roof pressure): 20.1 psf (upward)

Company

Address City, State Phone

JOB TITLE Chapter 5 Examples

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings

Kz = Kh (case 1) = 1.02Base pressure (qh) = 29.5 psf GCpi = +/-0.18 Edge Strip (a) = 14.7 ft End Zone (2a) = 29.4 ft Zone 2 length = 91.8 ft

Wind Pressure Coefficients

	CASE A					
		θ = 18.4 deg	-			
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.52	0.70	0.34	-0.45	-0.27	-0.63
2	-0.69	-0.51	-0.87	-0.69	-0.51	-0.87
3	-0.47	-0.29	-0.65	-0.37	-0.19	-0.55
4	-0.42	-0.24	-0.60	-0.45	-0.27	-0.63
5				0.40	0.58	0.22
6				-0.29	-0.11	-0.47
1E	0.78	0.96	0.60	-0.48	-0.30	-0.66
2E	-1.07	-0.89	-1.25	-1.07	-0.89	-1.25
3E	-0.67	-0.49	-0.85	-0.53	-0.35	-0.71
4E	-0.62	-0.44	-0.80	-0.48	-0.30	-0.66
5E				0.61	0.79	0.43
6E				-0.43	-0.25	-0.61

Ultimate Wind Surface Pressures (psf)

1	20.5 9.9	-8.0 -18.6
2	-15.0 -25.7	-15.0 -25.7
3	-8.5 -19.1	-5.6 -16.2
4	-6.9 -17.6	-8.0 -18.6
5		17.1 6.5
6		-3.2 -13.9
1E	28.3 17.7	-8.8 -19.5
2E	-26.2 -36.9	-26.2 -36.9
3E	-14.5 -25.2	-10.3 -20.9
4E	-12.9 -23.5	-8.8 -19.5
2E 3E 4E 5E		23.3 12.7
6E		-7.4 -18.0

Parapet

Windward parapet = 0.0 psf (GCpn = +1.5) Leeward parapet = 0.0 psf (GCpn = -1.0) Windward roof

overhangs = 20.6 psf (upward) add to windward roof pressure

Horizontal MWFRS Simple Diaphragm Pressures (psf)

Transverse direction (normal to L)

Interior Zone: Wall 27.5 psf Roof -6.5 psf **

End Zone: Wall 41.2 psf

Roof -11.7 psf **

Longitudinal direction (parallel to L)

Interior Zone: Wall End Zone: Wall

20.3 psf 30.7 psf

** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

JOB NO. SHEET NO.
CALCULATED BY DATE
CHECKED BY DATE

Wind Loads - h≤60' Longitudinal Direction MWFRS On Open or Partially

Enclosed Buildings with Transverse Frames and Pitched Roofs

Base pressure (qh) = **29.5 psf** GCpi = +/-0.18

+/-0.18 Enclosed bldg, procdure doesn't apply

Roof Angle (θ) = 18.4 deg

B= 200.0 ft

ASCE 7-16 procedure

of frames (n) = 5

Solid are of end wall including fascia (As) = 1,500.0 sf

Roof ridge height = 53.4 ft

Roof eave height = 20.0 ft

Total end wall area if soild (Ae) = 7,340.0 sf

Longidinal Directional Force (F) = pAe

p= qh [(GCpf)windward -(GCpf)leeward] K_B K_S

Solidarity ratio (Φ) = 0.204

n = 5

KB = -0.2

KS = 0.818

Zones 5 & 6 area = 6,924 sf

5E & 6E area = 416 sf

(GCpf) windward - (GCpf) leeward] = 0.710

0 = -3.4 psf

Total force to be resisted by MWFRS (F) = -25.1 kips applied at the centroid

of the end wall area Ae

Note: The longidudinal force acts in combination with roof loads calculated elsewhere for an open or partially enclosed building.

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-98 & ASCE 7-10 (& later) - MWFRS wind pressure zones

NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones

Company
Address
City, State
Phone

JOB	TITLE	Chapter	r 5	Examples	

SHEET NO.	JOB NO.
DATE	CALCULATED BY
DATE	CHECKED BY

Ultimate Wind Pressures

 $\frac{\text{Wind Loads - Components \& Cladding : h \le 60'}}{\text{Kh (case 1) = }} \begin{array}{ccc} \text{Kh (case 1) = } & \text{1.02} & \text{h = } \\ \text{Base pressure (qh) = } & \text{29.5 psf} & \text{a = } \end{array}$ 36.7 ft 14.7 ft Minimum parapet ht = 0.0 ft GCpi = +/-0.18 Roof Angle (θ) = 18.4 deg qi = qh = 29.5 psf

Type of roof = Gable

Roof		Surface Pressure (psf)						
Area	2 sf	10 sf	20 sf	50 sf	75 sf	100 sf	200 sf	250 sf
Negative Zone 1 & 2e	-64.3	-64.3	-64.3	-39.1	-28.0	-20.1	-20.1	-20.1
Negative Zone 2n, 2r &3e	-93.8	-93.8	-81.1	-64.3	-56.9	-51.6	-38.9	-34.8
Negative Zone 3r		-111.5	-95.5	-74.4	-65.0	-58.4	-58.4	-58.4
Positive All Zones	26	21.1	19	16.2	16.0	16.0	16.0	16.0
Overhang Zone 1 & 2e	-73.7	-73.7	-73.7	-56.9	-49.5	-44.2	-44.2	-44.2
Overhang Zone 2n & 2r	-103.2	-103.2	-93.7	-81.1	-75.5	-71.6	-62.1	-59.0
Overhang Zone 3e	-120.9	-120.9	-104.4	-82.6	-72.9	-66.1	-49.6	-44.2
Overhang Zone 3r	-138.6	-138.6	-117.3	-89.1	-76.7	-67.8	-67.8	-67.8

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 5.3 psf)

	User input						
ı	5 sf	208 sf					
Į	-64.3	-20.1					
ı	-93.8	-38.2					
ı	-111.5	-58.4					
	23.2	16.0					
ı	-73.7	-44.2					
	-103.2	-61.5					
1	-120.9	-48.6					
- Contraction	-138.6	-67.8					

<u>Parapet</u>

qp = 0.0 psf

st	Surface Pressure (psf)						
Solid Parapet Pressure	10 sf	20 sf	50 sf	100 sf	250 sf	500 sf	
CASE A: Zone 2e :	0.0	0.0	0.0	0.0	0.0	0.0	
Zone 2n, 2r & 3e :	0.0	0.0	0.0	0.0	0.0	0.0	
Zone 3r :	0.0	0.0	0.0	0.0	0.0	0.0	
CASE B: Interior zone:	0.0	0.0	0.0	0.0	0.0	0.0	
Corner zone :	0.0	0.0	0.0	0.0	0.0	0.0	

User	input
50	sf
	0.0
	0.0
	0.0
l	
	0.0
	0.0

<u>Walls</u>	(GCp +/- GCp	oi		Surfa	ce Pressure	at h	
Area	10 sf	100 sf	200 sf	500 sf	10 sf	100 sf	200 sf	500 sf
Negative Zone 4	-1.28	-1.10	-1.05	-0.98	-37.8	-32.5	-31.0	-28.9
Negative Zone 5	-1.58	-1.23	-1.12	-0.98	-46.6	-36.2	-33.0	-28.9
Positive Zone 4 & 5	1.18	1.00	0.95	0.88	34.8	29.6	28.0	26.0

User input				
15 sf	208 sf			
-36.8	-30.9			
-44.8	-32.9			
33.9	27.9			

SHEET NO.	JOB NO.
DATE	CALCULATED BY
DATE	CHECKED BY

Location of C&C Wind Pressure Zones - ASCE 7-10 & earlier

Roofs w/ $\theta \le 10^{\circ}$ and all walls h > 60'

Walls h ≤ 60' & alt design h<90'

Gable, Sawtooth and Multispan Gable $\theta \le 7$ degrees & Monoslope ≤ 3 degrees $h \le 60'$ & alt design h < 90'

Monoslope roofs $3^{\circ} < \theta \le 10^{\circ}$ $h \le 60'$ & alt design h<90'

Monoslope roofs $10^{\circ} < \theta \leq 30^{\circ}$ $h \leq 60' \text{ & alt design h<90'}$

Multispan Gable & Gable 7° < θ ≤ 45°

Hip $7^{\circ} < \theta \le 27^{\circ}$

Sawtooth $10^{\circ} < \theta \le 45^{\circ}$ h \le 60' & alt design h<90'

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

Location of C&C Wind Pressure Zones - ASCE 7-16

Roofs w/ $\theta \le 10^{\circ}$ and all walls h > 60'

Walls h ≤ 60' & alt design h<90'

Gable, Sawtooth and Multispan Gable $\theta \le 7$ degrees & Monoslope ≤ 3 degrees $h \le 60'$ & alt design h < 90'

Monoslope roofs $3^{\circ} < \theta \le 10^{\circ}$ $h \le 60'$ & alt design h<90'

Monoslope roofs $10^{\circ} < \theta \leq 30^{\circ}$ h \leq 60' & alt design h<90'

Multispan Gable & Gable $7^{\circ} < \theta \le 45^{\circ}$

Hip $7^{\circ} < \theta \le 27^{\circ}$

Sawtooth $10^{\circ} < \theta \le 45^{\circ}$ h \le 60' & alt design h<90'

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'

Company
Address
City, State
Phone

JOB	TITLE	Chan	ter 5	Example	25
JUD	1111	Onap	ici o	LAGITIPIC	,,

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

Roof Design Loads

Items	Description	Multiple	psf (max)	psf (min)
Roofing	Metal, copper, or tin sheets		1.5	1.0
Decking	Metal Roof deck, 1.5, 22 ga.		1.7	1.2
Framing	Steel roof joists & girders		3.0	2.0
Insulation	Fibrous Glass roof board per	x 4.0	4.4	4.4
Ceiling	Suspended acoustical tile		1.8	1.0
Mech & Elec	Mech. & Elec.		2.0	0.0
Misc.	Misc.		0.5	0.0
			0.0	0.0
	Actual De	ead Load	14.9	9.6
	Use this D	L instead	20.0	8.0
		Live Load	20.0	0.0
	\$	Snow Load	16.8	0.0
	Ultimate Wind (zon	e 2 - 100sf)	16.0	-38.9
ASD Loading		D + Lr	40.0	-
	D + 0.75(0).6*W + Lr)	42.2	-
	0.6*	D + 0.6*W	-	-18.5
LRFD Loading	1.2D + 1.6	Lr + 0.5W	64.0	-
	1.2D + 1.0	W + 0.5Lr	50.0	-
	0.5	9D + 1.0W	-	-31.7

Roof Live Load Reduction

User Input:

Roof angle 4.00 / 12 18.4 deg

0 to 200 sf: 20.0 psf

200 to 600 sf: 24 - 0.02Area, but not less than 12 psf

over 600 sf: 12.0 psf

300 sf 18.0 psf 400 sf 16.0 psf 500 sf 14.0 psf 450 sf 15.0 psf Company Address City, State Phone

IOR TIT	E	Chai	nter	5	Examples	
	-L- '	Onai	JUGI	J	LAGITIDICS	

JOB NO. SHEET NO. **CALCULATED BY** DATE CHECKED BY

www.struware.com

DATE

CODE SUMMARY

Code:

ASCE 7 - 16

Live Loads:

Roof

0 to 200 sf: 20 psf

200 to 600 sf: 24 - 0.02Area, but not less than 12 psf

over 600 sf: 12 psf

Typical Floor 50 psf **Partitions** 15 psf Lobbies & first floor corridors 100 psf Corridors above first floor 80 psf Balconies (1.5 times live load) 75 psf

Dead Loads:

Floor 100.0 psf Roof 20.0 psf

Wind Design Data:

Ultimate Design Wind Speed 115 mph Nominal Design Wind Speed 89.08 mph Risk Category 11 Mean Roof Ht (h) 36.7 ft **Exposure Category** Enclosure Classif. **Enclosed Building** Internal pressure Coef. +/-0.18 Directionality (Kd) 0.85

Roof Snow Loads:

Design Uniform Roof Snow load 16.8 psf Pf = Flat Roof Snow Load 16.8 psf Balanced Snow Load Ps = 16.8 psf Ground Snow Load Pg =20.0 psf Importance Factor | = 1.00 Snow Exposure Factor Ce = 1.20 Ct = Thermal Factor 1.00 Sloped-roof Factor Cs = 1.00 Drift Surcharge load Pd =Width of Snow Drift w =

Earthquake Design Data:

Risk Category = \parallel Importance Factor 1 = 1.00 Mapped spectral response accelerat Ss = 167.00 S1 = 20.00 Site Class D Spectral Response Coef. Sds =1.113 Sd1 =0.293 Seismic Design Category

Basic Structural System = Structural steel systems not specifically detailed for seismic resistance Seismic Resisting System = Structural steel systems not specifically detailed for seismic resistance

Design Base Shear V = 0.371W Seismic Response Coef. Cs = 0.371 R = Response Modification Factor

Analysis Procedure = Equivalent Lateral-Force Analysis

Company
Address
City, State
Phone

JOB	TITI	F	Chanter	5	Examples
JUD	1116	£	CHabler	0	LAGITIDICS

JOB NO.	 SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

www.struware.com

CODE SUMMARY- continued

Component and cladding ultimate wind pressures

Roof	Surface Pressure (psf)							
Area	2 sf	10 sf	20 sf	50 sf	75 sf	100 sf	200 sf	250 sf
Negative Zone 1 & 2e	-64.3	-64.3	-64.3	-39.1	-28.0	-20.1	-20.1	-20.1
Negative Zone 2n, 2r &3e	-93.8	-93.8	-81.1	-64.3	-56.9	-51.6	-38.9	-34.8
Negative Zone 3r	-111.5	-111.5	-95.5	-74.4	-65.0	-58.4	-58.4	-58.4
Positive All Zones	26.0	21.1	19.0	16.2	16.0	16.0	16.0	16.0
Overhang Zone 1 & 2e	-73.7	-73.7	-73.7	-56.9	-49.5	-44.2	-44.2	-44.2
Overhang Zone 2n & 2r	-103.2	-103.2	-93.7	-81.1	-75.5	-71.6	-62.1	-59.0
Overhang Zone 3e	-120.9	-120.9	-104.4	-82.6	-72.9	-66.1	-49.6	-44.2
Overhang Zone 3r	-138.6	-138.6	-117.3	-89.1	-76.7	-67.8	-67.8	-67.8

Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 5.3 psf)

	Parapet		Solid Pa	arapet Press	ure (psf)		
	Area	10 sf	20 sf	50 sf	100 sf	250 sf	500 sf
CASE A:	Zone 2e :	0.0	0.0	0.0	0.0	0.0	0.0
Zone 2	n, 2r & 3e :	0.0	0.0	0.0	0.0	0.0	0.0
	Zone 3r :	0.0	0.0	0.0	0.0	0.0	0.0
CASE B: Int	erior zone :	0.0	0.0	0.0	0.0	0.0	0.0
Co	rner zone :	0.0	0.0	0.0	0.0	0.0	0.0

Wall	Surface Pressure (psf)					
Area	10 sf	100 sf	200 sf	500 sf		
Negative Zone 4	-37.8	-32.5	-31.0	-28.9		
Negative Zone 5	-46.6	-36.2	-33.0	-28.9		
Positive Zone 4 & 5	34.8	29.6	28.0	26.0		