JOB TITLE

Company Address

City, State Phone

JOB NO. SHEET NO. CALCULATED BY CHECKED BY

DATE DATE

www.struware.com

CS2024 Ver 2024-03-08

STRUCTURAL CALCULATIONS

FOR

Company Address

City, State

Phone

JOB TITLE

 JOB NO.
 SHEET NO.

 CALCULATED BY
 DATE

 CHECKED BY
 DATE

www.struware.com

Code Search

Code: International Building Code 2021

Occupancy:

Occupancy Group = B Business

Risk Category & Importance Factors:

Risk Category =	II
Wind Factor =	1.00
Importance Factor	1.00
Seismic Importance factor =	1.00

Type of Construction:

Fire Rating:

Roof =	0.0 hr
Floor =	0.0 hr

Building Geometry:

Roof angle (θ)	0.25 / 12	1.2 deg
Building length	300.0 ft	
Least width	175.0 ft	
Mean Roof Ht (h)	62.0 ft	
Parapet ht above grd	64.0 ft	
Minimum parapet ht	2.0 ft	
hb for Elevated bldg	0.0 ft	

Live Loads:

<u>Roof</u>	0 to 200 sf: 200 to 600 sf: over 600 sf:	24 - 0.02Area, but not less than 12 psf
Roofs u	sed for roof gard	dens 100 psf
Floor:		
Typical	Floor	50 psf
Partitior	าร	15 psf
Corrido	rs above first floo	or 80 psf
Lobbies	& first floor corr	idors 100 psf
Stairs a	nd exit ways	100 psf

	JOB TITLE	Company
		Address
SHEET NO.	JOB NO.	City, State
DATE	CALCULATED BY	Phone
DATE	CHECKED BY	

Wind Loads :

Ultimate Wind Speed	120 mph
Nominal Wind Speed	93 mph
Risk Category	11
Exposure Category	С
Enclosure Classif.	Enclosed Building
Internal pressure	+/-0.18
Bldg Directionality (Kd)	0.85
Kh MWFRS<=60	1.144
Kh all other	1.144
Type of roof	Monoslope

Topographic Fa	actor (Kzt)		
Topography		Flat	
Hill Height	(H)	80.0 ft	
Half Hill Length	ı (Lh)	100.0 ft	
Actual H/Lh	=	0.80	
Use H/Lh	=	0.50	
Modified Lh	=	160.0 ft	
From top of cre	est: x =	50.0 ft	
Bldg up/down v	vind?	downwind	
H/Lh= 0.50		$K_1 = 0.$	000
x/Lh = 0.31		$K_2 = 0.$	792
z/Lh = 0.39		K ₃ = 1.	000
At Mean Roof I	Ht:		

$$Kzt = (1+K_1K_2K_3)^2 = 1.00$$

Gust Effect	Factor
h =	62.0 ft
B =	175.0 ft
/z (0.6h) =	37.2 ft

Rigid :	Structure	
ē =	0.20	
ℓ = z _{min} =	500 ft 15 ft	
c =	0.20	
$g_Q, g_v =$	3.4	
$L_z =$	512.1 ft	
Q =	0.85	
$I_z =$	0.20	
G =	0.85 ເ	use G = 0.85

 $\label{eq:Flexible structure if natural frequency < 1 Hz \quad (T > 1 second).$ If building h/B>4 then may be flexible and should be investigated. h/B = 0.35

G = 0.85 Using rigid structure default

Natural

Flexible or Dyna	amically Ser	nsitive S	tructure		
ral Frequency (η ₁) =	0.7 Hz				
Damping ratio (β) = /b =	0.01 0.650				
/α = Vz =	0.154 116.5				
N ₁ =	3.08				
R _n =	0.069				
R _h =	0.419	η =	1.713	h =	62.0 ft
R _B =	0.185	η =	4.836		
$R_L =$	0.035	η =	27.753		
g _R =	4.104				
R =	0.540				
Gf =	0.960				

Ground Elevation Factor (Ke)

Grd level above sea level =	0 ft	Ke =	1.0000
Constant =	0.00256		
0.00256Ke =	0.00256		

Enclosure Classification

Test for Enclosed Building:	Ao < 0.01Ag or 4 sf, whichever is smaller
Test for Open Building:	All walls are at least 80% open. Ao ≥ 0.8Ag

Test for Partially Enclosed Building: Predominately open on one side only

	Input			Test	
Ao	500.0	sf	Ao ≥ 1.1Aoi	NO	
Ag	600.0	sf	Ao > 4sf or 0.01Ag	YES	
Ag Aoi	1000.0	sf	Aoi / Agi ≤ 0.20	YES	Building is NOT
Agi	10000.0	sf			Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4sf or 0.01 Ag Aoi / Agi ≤ 0.20

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Test for Partially Open Building:

A building that does not qualify as open, enclosed or partially enclosed. (This type building will have same wind pressures as an enclosed building.)

Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):		- SF
Unpartitioned internal volume (Vi) :		- CF
	Ri =	1.00

Company	JOB TITLE	
Address		
City, State	JOB NO.	SHEET NO.
Phone	CALCULATED BY	DATE
	CHECKED BY	DATE

Wind Loads - MWFRS all h (Except for Open Buildings)

		Kh =	1.144	GCpi =	+/-0.18
Base pressure (qh) =	35.9 psf	Bldg dim parallel to ridge =	300.0 ft	G =	0.85
Roof Angle (θ) =	1.2 deg	Bldg dim normal to ridge =	175.0 ft	qi = qh	
Roof trib	utary area:	h =	62.0 ft		
Wind normal to ridge =(h/2)*L:	9300 sf	ridge ht =	63.8 ft		
Wind parallel to ridge =(h/2)*L:	5425 sf				

Ultimate Wind Surface Pressures (psf)

	Wind Normal to Ridge				Wind Paralle			to Ridge	
	L/B =	0.58	h/L = 0.35			L/B = 1.71		h/L =	0.21
Surface	Ср	$q_h GC_p$	w/+q _i GC _{pi}	w/-q _h GCpi	Dist.*	Ср	$q_h GC_p$	w/ +q _i GC _{pi}	w/ -q _h GC _{pi}
Windward Wall (WW)	0.80	24.4	see tab	le below		0.80	24.4	seet	able below
Leeward Wall (LW)	-0.50	-15.2	-21.7	-8.8		-0.36	-10.9	-17.3	-4.4
Side Wall (SW)	-0.70	-21.3	-27.8	-14.9		-0.70	-21.3	-27.8	-14.9
Leeward Roof (LR)		**				Inc	luded in w	indward roof	
Neg Windward Roof: 0 to h/2*	-0.90	-27.4	-33.9	-21.0	0 to h/2*	-0.90	-27.4	-33.9	-21.0
h/2 to h*	-0.90	-27.4	-33.9	-21.0	h/2 to h*	-0.90	-27.4	-33.9	-21.0
h to 2h*	-0.50	-15.2	-21.7	-8.8	h to 2h*	-0.50	-15.2	-21.7	-8.8
> 2h*	-0.30	-9.1	-15.6	-2.7	> 2h*	-0.30	-9.1	-15.6	-2.7
Pos/min windward roof press.	-0.18	-5.5	-11.9	1.0	Min press.	-0.18	-5.5	-11.9	1.0

*Horizontal distance from windward edge

**Roof angle < 10 degrees. Therefore, leeward roof is included in windward roof pressure zones.

For monoslope roofs, entire roof surface is either windward or leeward surface.

Windward roof overhangs :

24.4 psf (upward : add to qhGCp windward roof pressure)

Parapet

Z	Kz	Kzt	qp (psf)	
64.0 ft	1.152	1.00	36.1	
Windwa	ard parapet:	54.2 pst	(GCpn =	+1.5)
Leewa	ard parapet:	-36.1 psf	(GCpn =	-1.0)

Windward Wall Pressures at "z" (psf) Combined WW + LW Windward Wall Wind Normal Wind Parallel $q_z GC_p$ w/+ q_iGC_{pi} w/- q_hGC_p Kz Kzt to Ridge to Ridge z 0 to 15' 0.85 1.00 18.1 11.6 24.5 33.3 29.0 20.0 ft 0.90 1.00 19.2 12.8 25.7 34.5 30.1 25.0 ft 0.95 1.00 20.1 26.6 35.4 31.0 13.7 30.0 ft 0.98 1.00 20.9 14.5 27.4 36.2 31.8 40.0 ft 1.04 1.00 22.2 15.8 28.7 37.5 33.1 50.0 ft 1.09 1.00 23.3 16.9 29.8 38.5 34.2 60.0 ft 1.14 1.00 24.2 17.8 30.7 39.5 35.1 30.8 39.6 h= 62.0 ft 1.14 1.00 24.4 17.9 35.3 31.0 ridge = 63.8 ft 1.15 1.00 24.5 18.1 39.8 35.4

WIND PARALLEL TO RIDGE

Company Address	JOB TITLE
City, State	JOB NO SHEET NO
Phone	CALCULATED BY DATE
	CHECKED BY DATE
Elevated Buildings	Elevated building procedure is from ASCE 7 -22
	ressures on objects below hb
	Geometry limitation 1 Area of below elements / Area of Bldg above = 0.2%
Cross setional area of all columns below bldg = 64.0 sf Area of enclosed areas below bldg = 50.0 sf Total cross sectional area below bldg = 114.0 sf	$\begin{array}{rcl} \mbox{Direction 1 L/B} = & 0.58 & \mbox{Max L/B} = & 0.500 & \mbox{OK} \\ \mbox{Direction 2 L/B} = & 1.71 & \mbox{Max L/B} = & 0.500 & \mbox{OK} \\ \mbox{Meets geometry Limitation No 1 for both directions} \end{array}$
Elevated Building	Geometry limitation 2
Direction 1Projected width of all columns facing direction 1 =32.0 ftProjected L2 width of enclosed areas below bldg = 40.0 ftTotal projected width below bldg (width) =72.0 ftProjected area ratio =24.0% OK	Direction 2Projected width of columns direction 2 = 30.0 ft Projected L1 width of enclosed areas = 42.0 ft Total projected width below bldg (width) = 72.0 ft Projected area ratio = $41.1\% \text{ OK}$
hb = 0, therefore building is not an elevated building	Meets geometry Limitation No 2 for both directions
L1 S DIRECTION 1	h h2 0.25 h2
PLAN DIRECTION 2	

0.0 psf 0.0 k 0.0 k

Combined MWFRSwindward and leeward wind pressure on surfaces from 0 to hb (qzGCp) = MWFRS direction 1 force at height hb (width*hb/2) = MWFRS direction 2 force at height hb (width*hb/2) =

Vertical MWFRS wind pressures on bottom surface of the elevated building

Base pressure (qz) = 0.0 psf

Ultimate Vertical MWFRS Wind Surface Pressures (psf) at horizontal bo	ottom surface of elevated building
---	------------------------------------

	Wind Normal to Ridge				Wind Parallel to Ridge				
	L/B = 0.58		/B = 0.58 hb/L = 0.00			L/B = 1.71		hb/L =	0.00
	Ср	q _h GC _p	w/+q _i GC _{pi}	w/-q _h GCpi	Dist.*	Ср	$q_h GC_p$	w/ +q _i GC _{pi}	w/ -q _h GC _{pi}
Downward pressure: 0 to hb/2*	-0.90	0.0	0.0	0.0	0 to hb/2*	-0.90	0.0	0.0	0.0
hb/2 to hb*	-0.90	0.0	0.0	0.0	hb/2 to hb*	-0.90	0.0	0.0	0.0
hb to 2hb*	-0.50	0.0	0.0	0.0	hb to 2hb*	-0.50	0.0	0.0	0.0
> 2hb*	-0.30	0.0	0.0	0.0	> 2hb*	-0.30	0.0	0.0	0.0
Upward or min wind pressure	-0.18	0.0	0.0	0.0	Min press.	-0.18	0.0	0.0	0.0

JOB TITLE		
JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	
	JOB NO.	JOB NO. SHEET NO CALCULATED BY DATE

NOTE: ASCE 7 requires the application of full and partial loading of the wind pressures per the 4 cases below.

CASE 2

CASE 4

Wind Forces at Floors

2

2.0 ft

Total Floors above grade = T/Fdn (dist below grade) =

 Building dimension (parallel with ridge) =
 300.0 ft

 Building dimension (normal to ridge) =
 175.0 ft

 L is the building dimension parallel to the wind direction

e = 45.00 fte = 26.25 ft

	Elevation	Height of		Wind Normal to Ridge						Wind Parallel to Ridge		
	Above	Centroid				Applied	Story	Overturning	-	Applied	Story	Overturning
Level	Grade (ft)	to Fdn (ft)	L	В	Area (sf)	Force (k)	Shear (k)	Moment ('k)	Area	Force (k)	Shear (k)	Moment ('k)
Equip,etc	66.00	68.00	wind o	n equip, scree	nwalls, etc =	2				0		
Parapet	64.00	65.00	175.0	300.0	600.0	54.2			350.0	31.6		
T/Ridge	67.20	66.60	175.0	300.0	1,560.0	0.0			455.0	16.2		
Roof	62.00	64.00	175.0	300.0	3,300.0	130.8	186.9	62.2	1,925.0	67.9	115.7	73.8 Roof
2	40.00	42.00	175.0	300.0	6,300.0	236.1	423.0	4,174.3	3,675.0	121.7	237.4	2,619.7 2
1	20.00	22.00	175.0	300.0	6,000.0	206.7	629.8	12,634.7	3,500.0	105.4	342.8	7,368.7 1
GRD		2.00						25,230.1				14,224.9 GRD
FDN		0.00						26,489.6				14,910.5 FDN

		(Company Address			JOB TITLE				
			City, State Phone			JOB NO. CALCULATED BY CHECKED BY			SHEET NO. DATE DATE	
Wind L	.oads - M	WFRS h	l ≤60' (Low-1	ise Buildi	ngs) except fo	or open buildings				
I	Base press	ure (qh) = GCpi =	35.9 psf +/-0.18		Kz = Kh =	1.144	Edge Strip End Zone Zone 2 len	(2a) = gth =	17.5 ft 35.0 ft 87.5 ft -rise method	
		Wind Pro	essure Co	pefficien	ts			11 430 100	nise metriou	
		C	ASE A					CASE B		
	Surface	GCpf	θ = 1.2 deg w/-GCpi	w/+GCpi			GCpf	w/-GCpi	w/+GCpi	
	1 2 3 4 5	0.40 -0.69 -0.37 -0.29	0.58 -0.51 -0.19 -0.11	0.22 -0.87 -0.55 -0.47			-0.45 -0.69 -0.37 -0.45 0.40	-0.27 -0.51 -0.19 -0.27 0.58	-0.63 -0.87 -0.55 -0.63 0.22	
	6 1E 2E 3E 4E 5E 6E	0.61 -1.07 -0.53 -0.43	0.79 -0.89 -0.35 -0.25	0.43 -1.25 -0.71 -0.61			-0.29 -0.48 -1.07 -0.53 -0.48 0.61 -0.43	-0.11 -0.30 -0.89 -0.35 -0.30 0.79 -0.25	-0.47 -0.66 -1.25 -0.71 -0.66 0.43 -0.61	
		Ultimate	Wind Su	rface Pro	essures (p	sf)				
	1 2 3 4 5 6 1E 2E 3E 4E 5E		20.8 -18.3 -6.8 -3.9 28.3 -31.9 -12.6 -9.0	7.9 -31.2 -19.7 -16.9 15.4 -44.8 -25.5 -21.9				-9.7 -18.3 -6.8 -9.7 20.8 -3.9 -10.8 -31.9 -12.6 -10.8 28.3	-22.6 -31.2 -19.7 -22.6 7.9 -16.9 -23.7 -44.8 -25.5 -23.7 15.4	
	6E Parapet Windward p Leeward p	parapet =	54.2 -36.1	psf (GCp psf (GCp	on = +1.5) on = -1.0)	Windward O\	d roof verhangs =	-9.0	-21.9 psf (upward) windward ro	
<u>Horizont</u> a	Transvers	se directio	aphragm Pr n (normal to 24.7 -11.5 37 3	p L) psf psf **	<u>psf)</u>	WINDWARD OVERHANG 4001			LEEWARD ROOF	

	24.1 poi
Roof	-11.5 psf **
End Zone: Wall	37.3 psf
Roof	-19.4 psf **

Longitudinal direction (parallel to L)

Interior Zone: Wall	24.7 psf
End Zone: Wall	37.3 psf

** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

Company	JOB TITLE		
Address City, State Phone	JOB NO CALCULATED BY CHECKED BY		SHEET NO DATE DATE
Wind Loads - h≤60' Longitudinal Direction MV		lly	
Enclosed Buildings with Transverse FramesBase pressure (qh) = 35.9 psf h>60 - can't usGCpi =+/-0.18 Enclosed bldg,Roof Angle (θ) =1.2 deg		AS	CE 7-16+ procedure
DIRECTION	n=5 SHOWN		
	Solid are of end wall includi Roc	of ridge height = of eave height =	175.0 ft 4 26.0 sf 63.8 ft 62.0 ft 11,009.5 sf
p= qh [(GCp	n = KB = KS = Zones 5 & 6 area = 5E & 6E area =		

Total force to be resisted by MWFRS (F) = **154.1** kips applied at the centroid of the end wall area Ae

Note: The longidudinal force acts in combination with roof loads calculated elsewhere for an open or partially enclosed building.

NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones

Phone

JOB TITLE

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

Ultimate Wind Pressures

Wind Loads - Components & Cladding : Alternate design 60'<h<90'

Base pressure (qh) =	35.9 psf	Kh = h =	1.144 62.0 ft	0.2h = 12.4 ft	100.0 ft 100.0 ft	30.0 ft
Minimum parapet ht =	2.0 ft	0.6h =	37.2 ft		100.0 ft	
Roof Angle (θ) =	1.2 deg	GCpi =	+/-0.18			
Type of roof = N	qi = qh =	35.9 psf				

Roof		Surface Pressure (psf)						
Area	10 sf	20 sf	50 sf	100 sf	200 sf	350 sf	500 sf	1000 sf
Negative Zone 1	-67.40	-63.00	-57.10	-52.60	-48.2	-44.6	-42.3	-42.3
Negative Zone 1'	-38.70	-38.70	-38.70	-38.70	-33.3	-29.0	-26.2	-20.8
Negative Zone 2	-88.90	-83.20	-75.70	-69.90	-64.2	-59.6	-56.7	-56.7
Negative Zone 3	-121.20	-109.80	-94.70	-83.20	-71.8	-62.5	-56.7	-56.7
Positive All Zones	17.20	16.10	16.00	16.00	16.0	16.0	16.0	16.0
Overhang Zone 1&1'	-61.00	-59.90	-58.50	-57.40	-48.1	-40.6	-35.9	-35.9
Overhang Zone 2	-82.50	-74.90	-64.80	-57.20	-49.5	-43.4	-39.4	-39.4
Overhang Zone 3	-114.80	-101.40	-83.80	-70.40	-57.1	-46.3	-39.4	-39.4

User input								
80 sf	200 sf							
-54.1	-48.2							
-38.7	-33.3							
-71.8	-64.2							
-86.9	-71.8							
16.0	16.0							
-57.7	-48.1							
-59.6	-49.5							
-74.7	-57.1							

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 6.5 psf)

Parapet

aper								
qp =	36.1 psf	Г		Surfa	ce Pressure	e (psf)		
	Solid Parapet	Pressure	10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
	CASE A:	Zone 2 :	115.5	108.0	98.1	90.7	83.2	73.3
		∠one 3 :	148.0	134.8	117.3	104.0	90.8	73.3
	CASE B: Inte	rior zone :	-68.2	-64.8	-60.2	-56.8	-53.3	-48.7
	Cor	ner zone :	-78.0	-72.8	-65.9	-60.8	-55.6	-48.7

_	wall a =	17.5 ft							
Walls	(GCp +/- GCp	oi		Surfa	ce Pressure	e at h		U
Area	10 sf	100 sf	200 sf	500 sf	10 sf	100 sf	200 sf	500 sf	100 s
Negative Zone 4	-1.17	-1.01	-0.96	-0.90	-42.0	-36.3	-34.5	-32.3	-3
Negative Zone 5	-1.44	-1.12	-1.03	-0.90	-51.6	-40.2	-36.8	-32.3	-4
Positive Zone 4 & 5	1.08	0.92	0.87	0.81	38.7	33.0	31.3	29.0	3

Note: GCp reduced by 10% due to roof angle <= 10 deg.

1	
	User input
	50 sf
	98.1
	117.3
	-60.2
	-65.9
	00.0

User	User input							
100 sf	200 sf							
-36.3								
-40.2	-36.8							
33.0	31.3							

	QUEET
JOB TITLE	

dress		
, State JOB NO	SHEET NO.	
hone CALCULATED BY	DATE	
CHECKED B)	DATE	

Elevated building procedure is from ASCE 7 -22

Bottom Horizontal Surface of Elevated Buildings

	1.14	h =	62.0 ft	0.2hb =	0.00
Base pressure (qh) = Wall width =	35.9 psf 5.0 ft	hb =	0.0 ft	0.6hb = ab =	0.00 0.00

		GCp				Surface Pre	essure (psf)	
Area	10 sf	100 sf	500 sf	1000 sf	10 sf	100 sf	500 sf	1000 sf
Negative Zone 1	-1.70	-1.29	-1.00	-1.00	-67.4	-52.6	-42.3	-42.3
Negative Zone 1'	-0.90	-0.90	-0.55	-0.40	-38.7	-38.7	-26.2	-20.8
Negative Zone 2	-2.30	-1.77	-1.40	-1.40	-88.9	-69.9	-56.7	-56.7
Negative Zone 3	-3.20	-2.14	-1.40	-1.40	-121.2	-83.2	-56.7	-56.7
Positive Zones 1-3	0.30	0.20	0.20	0.20	17.2	16.0	16.0	16.0
Negative Zone 4'	-0.99	-0.83	-0.72	-0.72	-42.0	-36.3	-32.3	-32.3
Positive Zone 4'	0.90	0.74	0.63	0.63	38.7	33.0	29.0	29.0

User	User input				
80 sf	200 sf				
-54.1	-48.2				
-38.7	-33.3				
-71.8	-64.2				
-86.9	-71.8				
16.0	16.0				
-36.8	-34.5				
33.6	31.3				

Negative pressures are downward

Building Bottom Plan: h ≤ 60' and alternate design 60'<h<90'

Company Addr City, S Pho

Company	JOB TITLE		
Address			
City, State	JOB NO.	SHEET NO.	
Phone	CALCULATED BY	DATE	
	CHECKED BY	DATE	

Location of C&C Wind Pressure Zones - ASCE 7-22

Company
Address

City, State Phone JOB TITLE

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

Location of C&C Wind Pressure Zones - ASCE 7-16

Note: The hatched area indicates where roof positive pressures are equal to the adjacent wall positive pressure.

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'

Note: The stepped roof zones above are as shown in ASCE 7-16. Prior editions didn't show zones, but the notes sent you to the low slope gable figure. The note in ASCE 7-16 still sends you to the low slope gable figure, but for some reason the zones shown are per editions prior to ASCE 7-16. Therefore, the above zones may be a code mistake and the correct zone locations may be per the low slope gable roof shown at the top of this page.

JOB TITLE

JOB NO. CALCULATED BY CHECKED BY
 SHEET NO.

 DATE

 DATE

Stepped roofs θ ≤ 3° h ≤ 60' & alt design h<90'

Note: The hatched area indicates where roof positive pressures are equal to the adjacent wall positive pressure.

	JOB TITLE	Company
		Address
SHEET NO.	JOB NO.	City, State
DATE	CALCULATED BY	Phone
DATE	CHECKED BY	

Wind Loads - Open Buildings

Ultimate Wind Pressures

Type of roof = Monoslope Free Roofs	G =	0.85	
Wind Flow = Clear	Roof Angle =	1.2 deg	
			NOTE: The code requ

NOTE: The code requires the MWFRS be designed for a minimum pressure of 16 psf.

Main Wind Force Resisting System

Kz = Kh = 1.144

Base pressure (qh) =

35.9 psf

Roof pressures - Wind Normal to Ridge

Wind	Load		Wind D	irection
	Case		γ = 0 &	180 deg
Flow	Case		Cnw	Cnl
Clear Wind Flow B	Cn =	1.20	0.30	
	p =	36.6 psf	9.1 psf	
	Р	Cn =	-1.10	-0.10
	Б	p =	-33.5 psf	-3.0 psf

NOTE: 1). Cnw and Cnl denote combined pressures from top and bottom roof surfaces.

2). Cnw is pressure on windward half of roof. Cnl is pressure on leeward half of roof.

3). Positive pressures act toward the roof. Negative pressures act away from the roof.

Roof pressures - Wind Parallel to Ridge, ¥ = 90 deg

Wind	Load		Horizontal D	Distance from	n Windward		
				Edge		h =	62.0 ft
Flow	/ Case		≤h	>h ≤ 2h	> 2h	2h =	124.0 ft
	•	Cn =	-0.80	-0.60	-0.30		
Clear W	ind A	p =	-24.4 psf	-18.3 psf	-9.1 psf		
Flow	В	Cn =	0.80	0.50	0.30		
	В	p =	24.4 psf	15.2 psf	9.1 psf		

Fascia Panels -Horizontal pressures

qp =	35.9 psf	Windward fascia:	53.8 psf	(GCpn = +1.5)
		Leeward fascia:	-35.9 psf	(GCpn = -1.0)

Components & Cladding - roof pressures

Kz = Kh = 1.14 Base pressure (qh) = **35.9 psf** G = 0.85 a = 17.5 ft

 $a^2 = 306.3 \text{ sf}$ $4a^2 = 1225.0 \text{ sf}$

		Clear Wind Flow							
	Effective Wind Area	zone 3		zor	ne 2	zor	ne 1		
		positive	negative	positive	negative	positive	negative		
	≤ 306.3 sf	2.53	-3.44	1.90	-1.76	1.26	-1.15		
C _N	>306.3, ≤ 1225 sf	1.90	-1.76	1.90	-1.76	1.26	-1.15		
	> 1225 sf	1.26	-1.15	1.26	-1.15	1.26	-1.15		
Wind	≤ 306.3 sf	77.0 psf	-105.0 psf	57.8 psf	-53.8 psf	38.5 psf	-35.0 psf		
Wind pressure	>306.3, ≤ 1225 sf	57.8 psf	-53.8 psf	57.8 psf	-53.8 psf	38.5 psf	-35.0 psf		
pressure	> 1225 sf	38.5 psf	-35.0 psf	38.5 psf	-35.0 psf	38.5 psf	-35.0 psf		

Compa Addres City, Sta Phone	ate	JOB TITLE JOB NO. CALCULATED BY CHECKED BY	 SHEET NO. DATE DATE
WIND DIFECTION $\gamma = 0^{\circ}, 180^{\circ}$	Location of Open Buil	Uding Wind Pressure	TW CML

WIND DIRECTION $\gamma = 0^{\circ}$

PITCHED

TROUGH

WIND DIRECTION $\gamma = 180^{\circ}$ ÷

MONOSLOPE

WIND DIRECTION $\gamma = 90^{\circ}$

MAIN WIND FORCE RESISTING SYSTEM

⊖ < 10° $\Theta \ge 10^{\circ}$ PITCHED OR TROUGHED ROOF

MONOSLOPE

COMPONENTS AND CLADDING

Company	JOB TITLE		
Address			
City, State	JOB NO.	SHEET NO.	
Phone	CALCULATED BY	DATE	
	CHECKED BY	DATE	

Wind Loads - Rooftop Structures & Canopies

Building (L) =	300.0 ft
Building (B) =	175.0 ft
Directionality (Kd) =	0.85

Rooftop Structures & Equipment #1

Equipment length parallel to L =	10.0 ft		
Equipment length parallel to B =	5.0 ft		
Height of equipment =	5.0 ft	Base pressure (qh) =	35.9 psf

Vertical wind pressure		Wind normal to building B		Wind normal to building L		
Ar =	50.0 sf	Af =	25.0 sf	Af =	50.0 sf	
GCr =	1.500	GCr =	1.90	GCr =	1.90	
F = qhGCr Ar =	53.8 Ar (psf)	F = qhGCr Af =	68.1 Af (psf)	F = qhGCr Af =	68.1 Af (psf)	
Fv =	2.7 kips	Fh =	1.7 kips	Fh =	3.4 kips	

Rooftop Structures & Equipment #2

Equipment length parallel to L =	3.0 ft
Equipment length parallel to B =	3.0 ft
Height of equipment =	10.0 ft

Base pressure (qh) = 35.9 psf

Ultimate Wind Pressures

Vertical wind	d pressure	Wind normal to	o building B	Wind normal to	building L
Ar =	9.0 sf	Af =	30.0 sf	Af =	30.0 sf
GCr =	1.500	GCr =	1.90	GCr =	1.90
F = qhGCr Ar =	53.8 Ar (psf)	F = qhGCr Af =	68.1 Af (psf)	F = qhGCr Af =	68.1 Af (psf)
Fv =	0.5 kips	Fh =	2.0 kips	Fh =	2.0 kips

Attached Canopies on Buildings : Alternate design 60'<h<90'

Mean Roof Ht (h)=	62.0 ft	
Mean eave height (he) =	60.0 ft	
Mean Canopy height (hc) =	45.0 ft	
hc/he =	0.75	
		C&C Surface Pres

ASCE 7-22 Procedure used since h>60'

Base pressure (qh) = 35.9 psf

(qii) - **33.3 psi**

nc/ne = 0.75						
	C	C&C Surface I	Pressure (psf)		User in	nput
Area	10 sf	50 sf	100 sf	1000 sf	75 s	sf
Separate Individual Surfaces:						
Upper surface negative pressure	-42.9	-33.3	-29.1	-27.3	-30.	.8
Lower surface negative pressure	-29.0	-25.2	-23.5	-22.8	-24.	.2
Upper or Lower surface pos pressure	28.5	23.5	21.4	21.4	22.2	2
Combined Upper & Lower Surfaces (net):						
Negative pressure	-33.1	-26.3	-23.4	-23.4	-24.	.6
Positive pressure	32.0	25.8	23.1	23.1	24.2	2
· •						

Company Address

City, State

Phone

JOB TITLE

JOB NO. CALCULATED BY CHECKED BY

Wind Pressures on Solar Panels

Ultimate Wind Pressures

Roof angle θ =	1.2 deg
Mean Roof Ht h =	62.0 ft
Mean parapet height above roof hpt =	0.00 ft
Panel edge to adjacent array or bldg edge d1 =	18.40 ft
Panel edge to adjacent panel edge d2 =	1.00 ft
Panel chord length Lp =	6.00 ft
Dist from roof to lowest panel edge h1 =	0.80 ft
Dist from roof to highest panel edge h2 =	0.80 ft
Panel gap (must be 0.25 inches minimum) =	0.25 in
Solar panel angle to roof surface ω =	0.0 deg

Panels parallel to roof ($\omega \le 2 \text{ deg}$) all heights & roof slope

Wind pressure = qh(GCp)(YE)(Ya)

Calculate panel pressure by subtracting 6.45 psf (internal pressure) from the wind roof pressures and then multiply by the following factors (but minimum pressure shall be 16 psf)

		Adjustmen	t Factor (γ _E)	(γa)	User Input	
Location	<10 sf	20 sf	50 sf	>100 sf	21 sf	
Exposed Panel Uplift	1.20	1.02	0.78	0.60	1.01	$\gamma_E = 1.5$
Non exposed Uplift	0.80	0.68	0.52	0.40	0.67	$\gamma_{E} = 1.0$
All panels downward	0.80	0.68	0.52	0.40	0.67	$\gamma_{\rm E} = 1.0$

A panel is exposed if d1 to the roof edge is greater than 0.5h = 31.0 ft and either 1) d1 to the adjancent array is greater than 4 ft

or 2) d2 to the next adjacent panel is greater than 4 ft

Panels not parallel to roof - all heights & roof slope < 7 deg

Procedure only applies if clear distance between the roof edge and the panels is at least 4 ft

Wind pressure = qh(GCrn)

 $\gamma p = 0.900$

 $\gamma c = 0.960$

35.86 psf qh =

 $(GCrn)=(\gamma_p)(\gamma_c)(\gamma_E)(GC_{rn})_{nom}$

"A" is the effective wind area of the solar panel being considered

Normalized wind area An = A * 1,000 / (max Lb or 15)^2 Lb = minimum of $0.4(hW_L)^{0.5}$ or h or Ws = 54.6 ft = 0.336 A

			Wind pressure for normalized area An					
_	Location	0 sf	10 sf	100 sf	500 sf	1000 sf	5000 sf	
Expose	ed Zones							
$\gamma_{\rm E} = 1.5$	Zone 1	-69.7	-49.9	-30.1	-16.3	-16.0	-16.0	
	Zone 2	-93.0	-66.3	-39.6	-20.9	-16.7	-16.0	
	Zone 3	-106.9	-75.9	-44.9	-23.2	-18.3	-16.0	
Non Expos	sed Zones							
$\gamma_{\rm E} = 1.0$	Zone 1	-46.5	-33.3	-20.1	-16.0	-16.0	-16.0	
	Zone 2	-62.0	-44.2	-26.4	-16.0	-16.0	-16.0	
	Zone 3	-71.3	-50.6	-29.9	-16.0	-16.0	-16.0	
All Z	ones							
$\gamma_{E} = 1.0$	Zone 1	46.5	33.3	20.1	16.0	16.0	16.0	
	Zone 2	62.0	44.2	26.4	16.0	16.0	16.0	
	Zone 3	71.3	50.6	29.9	16.0	16.0	16.0	

 W_L (2)님 3 (3) (1)(2)2 Ms 3 (2)3 2h

A panel is exposed if d1 to the roof edge is greater than 0.5h = 31.0 ft and either 1) d1 to the adjancent array is > the max of 4h2 or 4 ft = 4.0 ft or 2) d2 to the adjancent panel is > the max of 4h2 or 4 ft

WIND PRESSURE ZONES

SOLAR PANEL ROOF PLAN

SOLAR PANEL ELEVATION

Company Address City, State Phone				TITLE B NO		SHEET NO
Phone			CALCULATE			DATE DATE
Vind Loads - Other Str	uctures	ASCE 7- 16	;		Ultin	nate Wind Pressures
Wind Gust Effect Fact A. Solid Freestanding Walls	Kzt =		posure =	120 mph C ss than 30% ope	en)	
		s/h =	0.25		Case A	<u>& B</u>
Dist to sign top (h)	80.0 ft	B/s =	2.50		C _f	= 1.80
Height (s)	20.0 ft	Lr/s =	0.00	F = qh G	Cf As	= 57.9 As
Width (B)	50.0 ft	Kz =	1.208		As	= 10.0 sf
Wall Return (Lr) = Directionality (Kd)	0.0 ft 0.85	qh =	37.8 psf		F	= 579 lbs
Percent of open area		Open reduction			Case	<u>C</u>
to gross area	0.0%	factor =	1.00	Horiz dist from windward edge	<u>Cf</u>	<u>F=qhGCfAs (psf)</u>
	Ca	se C reduction factors	<u>3</u>	0 to s	2.43	78.0 As
	I	actor if s/h>0.8 =	1.00	s to 2s	1.60	51.5 As
	W	all return factor for Cf at 0 to s =	1.00	2s to 3s	1.15	37.0 As

B. Open Signs & Single-Plane Open Frames (openings 30% or more of gross area)

Height to centroid of Af (z)	15.0 ft			Kz = Base pressure (qz) =	0.849 26.6 psf
Width (zero if round)	0.0 ft				
Diameter (zero if rect)	2.0 ft	D(qz)^.5 =	10.31	F = qz G Cf Af =	24.9 Af
Percent of open area		=	0.65	Solid Area: A _f =	10.0 sf
to gross area	35.0%	C _f =	1.1	F =	249 lbs
Directionality (Kd)	0.85				

C. Chimneys, Tanks, & Similar Structures

Height to centroid of Af (z)	15.0 ft	Kz = 0.849
Cross-Section	Round	Base pressure (qz) = 29.7 psf
Directionality (Kd)	0.95	h/D = 15.00
Height (h)	15.0 ft	$D(qz)^{.5} = 5.45$
Width (D)	1.0 ft	
Type of Surface	Rough (D'/D = 0.02)	
		Round

$\frac{Round}{C_f} =$	0.84
C _f =	0.64
F = qz G Cf Af =	21.3 Af
A _f =	10.0 sf
F =	213 lbs

D. Trussed Towers

Height to centroid of Af (z)	15.0 ft		Kz =	0.849
∈ =	0.27		Base pressure (qz) =	26.6 psf
Tower Cross Section	square			
Member Shape	flat		Diagonal wind factor =	1.2
Directionality (Kd)	0.85		Round member factor =	1.000
	Square (wind along tow Cf = F = qz G Cf Af = Solid Area: Af =	<u>/er diagonal)</u> 3.24 73.2 Af 10.0 sf	<u>Square (winc</u> C _f = F = qz G Cf Af = Solid Area: A _f =	<u>l normal to face)</u> 2.70 61.0 Af 10.0 sf
	F =	732 lbs	F =	610 lbs
	· -	102 100		010 100

Company		JOB TITLE	
Address City, State		JOB NO.	SHEET NO.
Phone		CALCULATED BY CHECKED BY	DATE DATE
Snow Loads : ASCE 7- 16			Nominal Snow Forces
Roof slope	= 1.2 deg		
Horiz. eave to ridge dist (W)			
Roof length parallel to ridge (L)	= 300.0 ft		
Type of Roof	Hip and gable	w/ trussed systems	
Ground Snow Load Pg			
Risk Category	=		
Importance Factor I	= 1.0		
Roof R value Rroof	= 30		
Thermal Factor Ct	= 1.000		
Exposure Factor Ce	= 1.0		
Pf = 0.7*Ce*Ct*I*Pg	= 20.5 psf		
Unobstructed Slippery Surface	no		
Sloped-roof Factor Cs	= 1.00		
Balanced Snow Load	= 20.5 psf	Near ground level su	rface balanced snow load = 30.0 psf
Rain on Snow Surcharge Angle	1.75 deg		
Code Maximum Rain Surcharge	5.0 psf		
Rain on Snow Surcharge	= 0.0 psf		
Ps plus rain surcharge	= 20.5 psf		
Minimum Snow Load Pm	= 20.0 psf		ans of continuous beams shall be loaded roof snow load so as to produce the greatest
Uniform Roof Design Snow Load	= 20.5 psf	possible effect - see	code for loading diagrams and exceptions

for gable roofs

Unbalanced Snow Loads - for Hip & Gable roofs only

Required if slope is between 7 on 12 = and 2.38 deg =		Unbalanced snow loads are not required
Windward snow load = Leeward snow load =	20.5 psf 20.5 psf	

Snow Drift 1 - Against roof projections, parapets, etc.

enen Briter Agamotroerpre	Joodionio, parap	010, 010
Up or downwind fetch	lu =	220.0 ft
Projection height	h =	5.2 ft
Projection width/length	lp =	20.0 ft
Snow density	γ =	17.9 pcf
Balanced snow height	hb =	1.14 ft
	hd =	3.77 ft
	hc =	4.06 ft
hc/hb >0.2 = 3.5	Therefore, de	esign for drift
Drift height (hd)	=	3.77 ft
Drift width	w =	15.08 ft
Surcharge load:	pd = γ*hd =	67.5 psf
Balanced Snow load:	=	20.5 psf
		88.0 psf
Snow Drift 2- Against roof proj	jections, parape	<u>ets, etc</u>
Up or downwind fetch	lu =	50.0 ft
Projection height	h =	4.0 ft
Projection width/length	lp =	20.0 ft
Snow density	γ =	17.9 pcf
Balanced snow height	hb =	1.14 ft
	hd =	1.86 ft
	hc =	2.86 ft
hc/hb > 0.2 = 2.5	Therefore, de	esign for drift
Drift height (hd)	=	1.86 ft
Drift width	w =	7.45 ft
Surcharge load:	pd = γ*hd =	33.3 psf
Balanced Snow load:	=	20.5 psf
		53.8 psf

0.55

Note: If bottom of projection is at least 2 feet above hb then snow drift is not required.

Address	ny			JOB TITLE	
City, Stat				JOB NO.	SHEET NO.
Phone				CULATED BY	DATE
					DATE
Snow Loads - from adja	acent build	ling or roof:	Ą	SCE 7- 16	Nominal Snow Forces
_		ligher Roof	Lower Roof		
	of slope =	1.2 deg 87.5 ft	0.00 / 12 = 24.0 ft	0.0 deg	
Horiz. eave to rid Roof length parallel		300.0 ft	240.0 ft		0.55
Projection height (ro		500.0 H	8.0 ft		0.00
	paration $s =$		5.0 ft		
Type of Roof Hip an	nd gable w/ truss	sed systems	Monoslope		
Ground Snow Load	Pg =	20.0 psf	20.0 psf		
	-				
Risk Category	=	II	II		
Importance Factor	=	1	1		
Roof R value	Rroof =	30	10		
Thermal Factor	Ct =	1.100	1.100		
Exposure Factor	Ce =	1.0	1.0		
Pf = 0.7*Ce*Ct*I*Pg	=	15.4 psf	15.4 psf		
Unobstructed Slippery S	urface	no	no		
Sloped-roof Factor	Cs =	1.00	1.00		
Balanced Snow Load	Ps =	15.4 psf	15.4 psf		
Rain on Snow Surcharge		1.75 deg	0.48 deg		
Code Maximum Rain Su	-	5.0 psf	5.0 psf		
Rain on Snow Surcharge Ps plus rain surcharge	e = =	5.0 psf 20.4 psf	5.0 psf 20.4 psf	١	NOTE: Alternate spans of continuous beams an
Minimum Snow Load	- Pm =	20.0 psf	20.4 psf		other areas shall be loaded with half the design oof snow load so as to produce the greatest
Uniform Roof Design S Building Official N		20.4 psf	20.4 psf	þ	possible effect - see code.
Leeward Snow Drifts - from a	adjacent highe	r roof			
Leeward Snow Drifts - from a Upper roof length	adjacent highe lu =	<u>r roof</u> 250.0 ft			\sim
	lu = y =	250.0 ft 16.6 pcf	 	 Lu	
Upper roof length	lu = y = hb =	250.0 ft 16.6 pcf 0.93 ft		Lu	Surcharge Load
Upper roof length Snow density Balanced snow height	lu = γ = hb = hc =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft			Surcharge Load Due to Drifting
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6	lu = γ = hb = hc = Therefore, d	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift		Lu	
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6	lu = γ = hb = hc = Therefore, d	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft	h hc	Lu hd pd	Due to Drifting
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height	lu = γ = hb = hc = Therefore, d = =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft		. 1	
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width	lu = γ = hb = hc = Therefore, d = = w =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft		. 1	Due to Drifting
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load:	lu = γ = hb = hc = Therefore, d = = w = pd = γ*hd =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf		hd pd	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load:	lu = γ = hb = hc = Therefore, d = w = pd = γ*hd = =_	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew		hd pd	Due to Drifting
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from	lu = γ = hb = hc = Therefore, d = w = pd = γ*hd = = n low roof again	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof		hd pd	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length	u = γ = hb = hc = Therefore, d = w = pd = γ*hd = = <u>h low roof again</u> u =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft		hd pd	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor	lu = γ = hb = hc = Therefore, d = w = pd = γ*hd = = <u>h low roof again</u> lu = =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75		hd pd	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height	u = γ = hb = hc = Therefore, d = w = pd = γ*hd = = n low roof again u = = =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft		hd pd	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor	lu = γ = hb = hc = Therefore, d = w = pd = γ*hd = = <u>h low roof again</u> lu = =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75		hd pd	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width	lu = γ = hb = hc = Therefore, d = w = pd = γ*hd = = n low roof again lu = = w = w =	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft 3.51 ft		hd pd	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width Surcharge load:	$\begin{aligned} & u = \\ &\gamma = \\ &hb = \\ &hc = \\ &\text{Therefore, d} \\ &= \\ &w = \\ &pd = \gamma^*hd = \\ &= \\ &n \ low \ roof \ again \\ &lu = \\ &= \\ &w = \\ &pd = \gamma^*hd = \end{aligned}$	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft 3.51 ft 14.6 psf		hd pd	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Sliding Snow - onto lower ro	$lu = \gamma = hb = hc = Therefore, d = w = pd = \gamma*hd = = n low roof again lu = = w = pd = \gamma*hd = = pd = (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)$	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft 3.51 ft 14.6 psf 15.4 psf		hd pd hb	Due to Drifting Balanced Snow Load
Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Sliding Snow - onto lower roo	$lu = \gamma = hb = hc = Therefore, d = w = pd = \gamma*hd = = n low roof again lu = = w = pd = \gamma*hd = = w = pd = \gamma*hd = = 0 for the second secon$	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft 3.51 ft 14.6 psf 15.4 psf 30.0 psf 0.0 plf	ard drift controls	hd pd hb	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Balanced Snow load:	$lu = Y = hb = hc = Therefore, d = w = pd = \gamma^*hd = = w = pd = \gamma^*hd = = w = pd = \gamma^*hd = = w = pd = \gamma^*hd = = = = boof v = 0.4 Pf W = over 15 feet = = = = $	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft 3.51 ft 14.6 psf 15.4 psf 30.0 psf 0.0 plf 0.0 psf	ard drift controls	hd pd hb w	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Sliding Snow - onto lower roo Sliding snow	$lu =$ $y =$ $hb =$ $hc =$ Therefore, d $=$ $w =$ $pd = \gamma^*hd =$ $=$ $hor f =$ $y^*hd =$ $=$ $pd = \gamma^*hd =$ $=$ $pd = \gamma^*hd =$ $=$ $pd = \gamma^*hd =$ $=$ $hd + hb =$	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft 3.51 ft 14.6 psf 15.4 psf 30.0 psf 0.0 plf 0.0 psf 0.93 ft	ard drift controls	hd pd hb w	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Sliding Snow - onto lower ro Sliding snow Distributed of	$lu =$ $y =$ $hb =$ $hc =$ Therefore, d $=$ $w =$ $pd = \gamma^*hd =$ $=$ $h low roof again$ $lu =$ $=$ $w =$ $pd = \gamma^*hd =$ $=$ $pd = \gamma^*hd =$ $=$ $w =$ $pd = \gamma^*hd =$ $=$ $hd + hb =$ $sliding snow =$	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft 3.51 ft 14.6 psf 15.4 psf 30.0 psf 0.0 plf 0.0 psf 0.93 ft 0.0 psf	ard drift controls	hd pd hb hb w oof	Due to Drifting Balanced Snow Load
Upper roof length Snow density Balanced snow height hc/hb >0.2 = 7.6 (6h-s)/6 Drift height Drift width Surcharge load: Balanced Snow load: Windward Snow Drifts - from Lower roof length Adj structure factor Drift height Drift width Surcharge load: Balanced Snow load: Sliding Snow - onto lower ro Sliding snow Distributed of hd + hb < =h therefore s	$lu =$ $y =$ $hb =$ $hc =$ Therefore, d $=$ $w =$ $pd = \gamma^*hd =$ $=$ $hor f =$ $y^*hd =$ $=$ $pd = \gamma^*hd =$ $=$ $pd = \gamma^*hd =$ $=$ $pd = \gamma^*hd =$ $=$ $hd + hb =$	250.0 ft 16.6 pcf 0.93 ft 7.07 ft esign for drift 7.17 ft 4.84 ft 29.04 ft 80.3 psf 15.4 psf 95.7 psf Leew nst high roof 80.0 ft 0.75 0.88 ft 3.51 ft 14.6 psf 15.4 psf 30.0 psf 0.0 plf 0.0 psf 0.93 ft	ard drift controls	hd pd hb hb w oof	Due to Drifting Balanced Snow Load

Seismic Loads:IBC 2021Risk Category :IIImportance Factor (le) :1.00Site Class :DSs (0.2 sec) = 0.60 g Fa = 1.320 S1 (1.0 sec) = 0.10 g Fv = 2.400 Sms = 0.792 Sms = 0.792 Sm = 0.240 Seismic Design Category =DRedundancy Coefficient ρ = 1.30 Number of Stories: 3 Structure Type:All other building systemsHorizontal Struct Irregularities:No plan IrregularityVertical Structural Irregularities:No vertical IrregularitySeismic resisting system:Structural steel systems not specifically detailsSeismic resisting system:Structural steel systems not specifically detailsSystem Structural Height Limit:System not permitted for this seismic design of Actual Structural Height Limit:System Structural Height (hn) = 62.0 ft See ASCE7 Section 12.2.5 for exceptions and othESIGN COEFFICIENTS AND FACTORS Over-Strength Factor (Ω o) = 3	n Category = D n Category = C ed for seismic resistant ed for seismic resistant ategory	ce = 0.061 = 0.303
Seismic Loads:IBC 2021Risk Category:I Importance Factor (Ie): 1.00 Site Class: $Ste Class: D$ $S_{0.2} sec) =$ $0.60 g$ $S1 (1.0 sec) =$ $S (0.2 sec) =$ $0.60 g$ $S1 (1.0 sec) =$ $S (0.2 sec) =$ $0.60 g$ $S1 (1.0 sec) =$ $S (0.2 sec) =$ $0.60 g$ $S1 (1.0 sec) =$ $S (0.2 sec) =$ $0.60 g$ $S1 (1.0 sec) =$ $S (0.2 sec) =$ $0.60 g$ $S1 (1.0 sec) =$ $S (0.2 sec) =$ $0.60 g$ $S_{01} =$ $S (0.2 sec) =$ 0.792 $S_{01} =$ $S (0.2 sec) =$ 0.792 $S_{01} =$ $S (0.2 sec) =$ 0.792 $S_{01} =$ $S (0.2 sec) =$ 0.792 $S (0.1 ec) 017$ $S (0.1 cc) 017$ 	CHECKED BY Site specific ground m in Category = D in Category = C d for seismic resistant ad for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	CE CE CE CE CE CE CE CE CE CE
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n Category = D n Category = C ed for seismic resistant ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce ce ce = 0.061 = 0.303 = error, you need to
Importance Factor (1e) : 1.00 Site Class : D $Stie Class : D$ $Stie (1.0 sec) = 0.60 g Fa = 1.320$ $St (1.0 sec) = 0.10 g Fv = 2.400$ $Sms = 0.792 S_{DS} = 0.528 Desig$ $Sm1 = 0.240 S_{D1} = 0.160 Desig$ Seismic Design Category = D Redundancy Coefficient $\rho = 1.30$ Number of Stories: 3 Structure Type: All other building systems Horizontal Struct Irregularities: No plan Irregularity Vertical Structural Irregularities: No vertical Irregularity Vertical Structural Irregularities: No vertical Irregularity Seismic resisting system: Structural steel systems not specifically details Seismic resisting system: Structural steel systems not specifically details System Structural Height Limit: System not permitted for this seismic design of Actual Structural Height Limit: System not permitted for this seismic design of Actual Structural Height Coefficient (R) = 3 Over-Strength Factor (00) = 3 Deflection Amplification Factor (Cd) = 3 Long Perior $S_{DS} = 0.528$ $S_{D1} = 0.160$ Seismic Load Effect (E) = Eh +/-Ev = $\rho Q_E +/-0.2S_{DS} D$ Special Seismic Load Effect (E) = Eh +/-Ev = $\rho Q_E +/-0.2S_{DS} D$ $Special Seismic Load Effect (E) = Eh +/-Ev = \rho Q_E +/-0.2S_{DS} DSpecial Seismic Load Effect (E) = Eh +/-Ev = \rho Q_E +/-0.2S_{DS} DALLOWABLE STORY DRIFTStructure Type: All other structuresAllowable story drift \Delta a = 0.020hsx where hsx is the story height below$	n Category = D n Category = C ed for seismic resistant ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce ce = 0.061 = 0.303 = error, you need to
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n Category = D n Category = C ed for seismic resistant ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce ce = 0.061 = 0.303 = error, you need to
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n Category = D n Category = C ed for seismic resistant ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce ce = 0.061 = 0.303 = error, you need to
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n Category = D n Category = C ed for seismic resistant ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce ce = 0.061 = 0.303 = error, you need to
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n Category = C ed for seismic resistant ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce = 0.061 = 0.303 = error, you need to
Redundancy Coefficient $\rho = 1.30$ Number of Stories: 3 Structure Type: All other building systems Horizontal Struct Irregularities: No plan Irregularity Vertical Structural Irregularities: No vertical Irregularity Flexible Diaphragms: No Building System: Structural steel systems not specifically detail Seismic resisting system: Structural steel systems not specifically detail System Structural Height Limit: System not permitted for this seismic design of Actual Structural Height (hn) = 62.0 ft See ASCE7 Section 12.2.5 for exceptions and oth ESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 3 Over-Strength Factor (Ω o) = 3 Deflection Amplification Factor (Cd) = 3 Long Perior S _{DS} = 0.528 S _{D1} = 0.160 Seismic Load Effect (E) = Eh +/-Ev = ρQ_E +/- 0.2S _{DS} D Special Seismic Load Effect (Em) = Emh +/- Ev = $\Omega o Q_E$ +/- 0.2S _{DS} D Special Seismic Load Effect (Em) = Emh +/- Ev = $\Omega o Q_E$ +/- 0.2S _{DS} D Special Seismic Load Effect (Em) = Emh +/- Ev = $\Omega o Q_E$ +/- 0.2S _{DS} D ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift $\Delta a = 0.020hsx$ where hsx is the story height below	ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce = 0.061 = 0.303 = error, you need to
Structure Type: All other building systems Horizontal Struct Irregularities: No plan Irregularity Vertical Structural Irregularities: No vertical Irregularity Flexible Diaphragms: No Building System: Structural steel systems not specifically details Seismic resisting system: Structural steel systems not specifically details System Structural Height Limit: System not permitted for this seismic design of Actual Structural Height (hn) = 62.0 ft See ASCE7 Section 12.2.5 for exceptions and oth ESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 3 Over-Strength Factor (Ωo) = 3 Deflection Amplification Factor (Cd) = 3 Long Perior $S_{DS} = 0.528$ $S_{D1} = 0.160$ Seismic Load Effect (E) = Eh +/-Ev = ρQ_E +/- $0.2S_{DS} D$ Special Seismic Load Effect (Em) = Emh +/- Ev = $\Omega o Q_E$ +/- $0.2S_{DS} D$ ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift $\Delta a = 0.020hsx$ where hsx is the story height below	ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce = 0.061 = 0.303 = error, you need to
Horizontal Struct Irregularities: No plan Irregularity Vertical Structural Irregularities: No vertical Irregularity Flexible Diaphragms: No Building System: Structural steel systems not specifically details Seismic resisting system: Structural steel systems not specifically details System Structural Height Limit: System not permitted for this seismic design of Actual Structural Height (hn) = 62.0 ft See ASCE7 Section 12.2.5 for exceptions and oth ESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 3 Over-Strength Factor (Ω o) = 3 Deflection Amplification Factor (Cd) = 3 Long Perior S _{DS} = 0.528 S _{D1} = 0.160 Seismic Load Effect (E) = Eh +/-Ev = ρQ_E +/- 0.2S _{DS} D Special Seismic Load Effect (Em) = Emh +/- Ev = ρQ_E +/- 0.2S _{DS} D ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift Δ a = 0.020hsx where hsx is the story height below	ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce = 0.061 = 0.303 = error, you need to
Building System: Structural steel systems not specifically details Seismic resisting system: Structural steel systems not specifically details System Structural Height Limit: System not permitted for this seismic design of Actual Structural Height (hn) = 62.0 ft See ASCE7 Section 12.2.5 for exceptions and oth ESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 3 Over-Strength Factor (Ω o) = 3 Deflection Amplification Factor (Cd) = 3 Long Period S _{DS} = 0.528 S _{D1} = 0.160 Seismic Load Effect (E) = Eh +/-Ev = $\rho Q_E +/- 0.2S_{DS} D$ Special Seismic Load Effect (Em) = Emh +/- Ev = $\Omega o Q_E +/- 0.2S_{DS} D$ ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift Δa = 0.020hsx where hsx is the story height below	ed for seismic resistant ategory er system limitations To = 0.2(Sd1/Sds) : Ts = Sd1/Sds :	ce = 0.061 = 0.303 = error, you need to
$\begin{array}{rcl} & \text{Over-Strength Factor } (\Omega o) = & 3 \\ & \text{Deflection Amplification Factor } (Cd) = & 3 \\ & & \text{S}_{DS} = & 0.528 \\ & & \text{S}_{D1} = & 0.160 \\ & & \text{Seismic Load Effect } (E) = & \text{Eh +/-Ev} = & \rho Q_E +\!\! - 0.2S_{DS} D \\ & & \text{Special Seismic Load Effect } (Em) = & \text{Emh +/- Ev} = & \Omega o Q_E +\!\! - 0.2S_{DS} D \\ \hline & & \text{ALLOWABLE STORY DRIFT} \\ & & \text{Structure Type:} & & \text{All other structures} \\ & & \text{Allowable story drift } \Delta a = & 0.020 \text{hsx} & \text{where hsx is the story height below} \end{array}$	Ts = Sd1/Sds =	= 0.303 = error, you need to
Deflection Amplification Factor $(Cd) = 3$ Long Period $S_{DS} = 0.528$ $S_{D1} = 0.160$ Seismic Load Effect (E) = Eh +/-Ev = ρQ_E +/- $0.2S_{DS}D$ Special Seismic Load Effect (Em) = Emh +/- Ev = $\Omega o Q_E$ +/- $0.2S_{DS}D$ <u>ALLOWABLE STORY DRIFT</u> Structure Type: All other structures Allowable story drift $\Delta a = 0.020hsx$ where hsx is the story height below		error, you need to
$\begin{split} S_{D1} &= 0.160 \\ Seismic Load Effect (E) &= Eh + /-Ev &= \rho Q_E + /- 0.2S_{DS} D \\ Special Seismic Load Effect (Em) &= Emh + /- Ev &= \Omega o Q_E + /- 0.2S_{DS} D \\ \hline ALLOWABLE STORY DRIFT \\ Structure Type: All other structures \\ Allowable story drift \Delta a &= 0.020 hsx where hsx is the story height below \end{split}$		
Special Seismic Load Effect (Em) = Emh +/- Ev = $\Omega o Q_E$ +/- 0.2S _{DS} D <u>ALLOWABLE STORY DRIFT</u> Structure Type: All other structures Allowable story drift $\Delta a = 0.020$ hsx where hsx is the story height below		
Structure Type: All other structures Allowable story drift $\Delta a = 0.020$ hsx where hsx is the story height below	= 1.3Qe +/ 0.106D = &G40&"(0.106D	Q _E = horizontal seismic force D = dead load
Allowable story drift $\Delta a = 0.020$ hsx where hsx is the story height below		
ERMITTED ANALYTICAL PROCEDURES	level x	
Index Force Analysis - Method Not Permitted (only applied	s to Seismic Category A)	
odel & Seismic Response Analysis - Permitted (see code for procedure)	
quivalent Lateral-Force (ELF) Analysis - Permitted		
Building period coet. $(C_T) = 0.020$		Cu = 1.58
Approx fundamental period (Ta) = $C_T h_n^x = 0.442 \text{ sec} x = User calculated fundamental period = 0.442 \text{ sec} x = $	0.75 Tm	ax = CuTa = 0.698 sec T = 0.442 sec
Seismic response coef. (Cs) =SdsI/R = 0.176 need not exceed Cs =Sd1 TL/RT^2 = 0.000 but not less than Cs = 0.044 Sds*l = 0.023		
USE Cs = 0.023 Design Bas		

	Tot	al Stories =	1	Floor [Dead Load =	80.0 psf		Roof Snow Load =	0.0 psf	
	Building	g length L =	300.0 ft	Floor LL	to include =	0.0 psf		Roof Equip wt =	0.0 kips	
	Building	g width W =	175.0 ft	Floo	or Equip wt =	0.0 kips		Parapet weight =	0.0 psf	
		hn =	62.0 ft	Parti	tion weight =	10.0 psf		Parapet height =	0.0 ft	
		k =	1.000	Ext W	/all Weight =	50.0 psf				
		V = 6	enter TL (see I	ink abo Reoi d	Dead Load =	20.0 psf		Diaphragm shall be	designed for	level force Fx,
F	Dattam Elaa		aloh on grad							Visit view in the set of
			a slab on grad	е				but not less than l Fpx min = 0.2S		
		uding all exte	Ū	е				Fpx min = 0.25 Fpx max = 0.45	S _{DS} le wpx =	0.106 wpx
		· · ·	Ū	e Cvx =	V = 3	32.7k		Fpx min = 0.28	S _{DS} le wpx =	0.106 wpx
Seismic Fo	orces (Inclu	uding all exte	Ū	Cvx = <u>Wx hx^ĸ</u>		32.7k Shear Distril	bution	Fpx min = 0.2 S Fpx max = 0.4 S	S _{DS} le wpx =	0.106 wpx 0.211 wpx
Seismic Fo	<u>orces (Inclu</u> EL above	uding all externation	erior walls)	Cvx =	Base S		bution Story M	Fpx min = 0.2 S Fpx max = 0.4 S	_{DS} le wpx = _{DS} le wpx =	0.106 wpx 0.211 wpx
<u>Seismic Fo</u> s	orces (Inclu EL above eismic Base	uding all exte Level Weight	erior walls) Wx hx ^ĸ	Cvx = <u>Wx hx^ĸ</u>	Base S	Shear Distril		Fpx min = 0.2S Fpx max = 0.4S Diaph	B _{DS} le wpx = B _{DS} le wpx =	0.106 wpx 0.211 wpx Fpx
<u>Seismic Fo</u> s S Level (x)	orces (Inclu EL above eismic Base hx (ft)	uding all exte Level Weight Wx (kips)	erior walls) Wx hx ^ĸ (ft-kips)	Cvx = <u>Wx hx^κ</u> Σ Wi hi ^κ	Base S Fx=CvxV	Shear Distril Σ Fx (k)	Story M	Fpx min = 0.25 Fpx max = 0.45 $\underline{\qquad}$ Diaph Σ Wi (k)	B _{DS} le wpx = B _{DS} le wpx = hragm Force Fpx	0.106 wpx 0.211 wpx Fpx Design Fpx
<u>Seismic Fo</u> s S Level (x)	EL above eismic Base hx (ft) 15.00	uding all exte Level Weight Wx (kips) 1,406	erior walls) Wx hx ^ĸ (ft-kips) 21,094	$\frac{\text{Cvx} =}{\sum \text{Wi hi}^{\kappa}}$	Base S Fx=CvxV 32.67	Shear Distril Σ Fx (k) 32.7	Story M 0	Fpx min = 0.25 Fpx max = 0.45 <u>Diaph</u> Σ Wi (k) 1,406	S_{DS} le wpx = S_{DS} le wpx = $\frac{1}{5}$ le wpx = $\frac{1}{5}$ Fpx 32.7	0.106 wpx 0.211 wpx Fpx Design Fpx 148.5

	Diaphragn	n Forces ex	cluding para	allel exterior	walls							
	Diaphragm Force Fpx Parallel to Bldg Length V= 27k							Diaphragm F	Force Fpx No	ormal to Bldg	Length V=	30k
Cvx =	Fx=CvxV	Σ Fx (k)	Σ Wi (k)	Fpx	Design Fpx	Level (x)	Cvx =	Fx=CvxV	Σ Fx (k)	Σ Wi (k)	Fpx	Design Fpx
1.000	27.44	27.4	1,181	27.4	124.7	Roof	1.000	29.6	29.6	1,275	29.6	134.6
0.000	0.00	0.0	0	0.0	0.0	1	0.000	0.0	0.0	0	0.0	0.0
1.000		27.4				Base	1.000		29.6			

			JOB TI	LE		
Address City, State Phone			JOB I CULATED HECKED	ВҮ	SHE	ET NO DATE DATE
Seismic Loads - cont. : Strength	Level Force	es	Se	smic Desig	gn Category (S	SDC)= D le = 1.00
<u>CONNECTIONS</u>						Sds = 0.528
Force to connect smaller portions of s	structure to	remainder	of struc	<u>ture</u>		
$\label{eq:Fp} \begin{array}{ll} {\sf Fp} = 0.133 {\sf Sdsw}_{\sf p} = & 0.070 \ {\sf w}_{\sf p} \\ \\ {\sf or} \ {\sf Fp} = 0.05 {\sf w}_{\sf p} = & 0.05 \ {\sf w}_{\sf p} \end{array}$	Use Fp =	0.07 W _p	w _p = v	veight of sr	maller portion	
Beam, girder or truss connection for r	resisting ho	orizontal for	ce para	lel to men	nber	
F_{P} = no less than 0.05 times dead plus li						
Anchorage of Structural Walls to elem	onto provid	ding lateral	cuppor			
Fp = not less than 0.2KaleWp	ients provid	any lateral	suppon		Elexible diaph	nragm span Lf =
Enter Lf to calculate Fp for flexible diaph						
$\begin{array}{rl} Fp = 0.4SdskaleWp = 0.211 Wp, but no \\ \underline{w/ anchor adjustment factor} \\ h = 62.0 & Flexible Dia \\ \end{array}$).2Wp (rigic Fp=	diaphra Wp		ka= 1 hall not be less	Fp = 0.211 Wp s than 5 psf
	aphragm:	•	1 Wp	facto	or = 1.000	
Bearing Walls and Shear Walls (out of	f plane force	<u>e)</u>				
$Fp = 0.4SdsIeWw = 0.211 w_w$ but not less than 0.10 w_w	Use Fp =	0.211 w _w				
Diaphragms						
Fp = (Sum Fi / Sum Wi)Wp need not exceed 0.4 SdsleWp but not less than 0.2 SdsleWp	x + Vpx = 0	0.211 Wpx	+ Vрх	i Wi)Wpx +	- Vрх	
ARCHITECTURAL COMPONENTS SEIS	MIC COE	·	·			
Architectural Component : Cantileve Chimney	er Elements	FFICIENT	<u>S</u> or Brace			ow Its Center of Mass): tructural frame
Architectural Component : Cantileve Chimney Importance Factor (Ip) : 1.0	er Elements ys and stack	FFICIENT (Unbraced of s when later	<u>S</u> or Brace ally brac	ed or supp		
Architectural Component : Cantileve Chimney Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) = Comp Response Modification Factor (Rp) =	er Elements ys and stack 2.5 2.5	FFICIENT (Unbraced of s when later	S or Brace ally brac = 62			
Architectural Component : Cantileve Chimney Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) = Comp Response Modification Factor (Rp) = Over-Strength Factor (Ωo) =	er Elements ys and stack 2.5 2.5 2	FFICIENT (Unbraced o s when later ł	S or Brace ally brac = 62	ed or supp 2.0 feet	orted by the st	tructural frame
Architectural Component : Cantileve Chimney Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) = Comp Response Modification Factor (Rp) = Over-Strength Factor (Ωo) = Fp = 0.4apSdsIpWp(1+2z/h)/Rp =	er Elements ys and stack 2.5 2.5	FFICIENT (Unbraced o s when later ł z	S or Brace ally brac = 62	ed or supp 2.0 feet	orted by the st	tructural frame
Architectural Component : Cantileve Chimney Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) = Comp Response Modification Factor (Rp) = Over-Strength Factor (Ωo) =	er Elements ys and stack 2.5 2.5 2 0.347 W	FFICIENT (Unbraced o s when later /p /p	S or Brace ally brac = 62	ed or supp 2.0 feet 0.0 feet	orted by the st	tructural frame
$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	er Elements ys and stack 2.5 2.5 2 0.347 W 0.845 W 0.158 W	FFICIENT (Unbraced o s when later b /p /p /p	S or Brace ally brac = 6 = 20 use Fp	ed or supp 2.0 feet 0.0 feet	orted by the st z/h = .347 Wp Seismic Desig	0.32 n Category D & Ip=1.0, therefor
$\label{eq:component} \begin{array}{llllllllllllllllllllllllllllllllllll$	er Elements ys and stack 2.5 2 0.347 W 0.845 W 0.158 W	FFICIENT (Unbraced of s when later /p /p FFICIENT isolated eq	S or Brace ally brac = 20 use Fr	ed or supp 2.0 feet 0.0 feet 0 = 0.	orted by the st z/h = .347 Wp Seismic Desig see ASC	0.32 0.32 In Category D & Ip=1.0, therefor E7 Section 13.1.4 for exception
$\label{eq:component} \begin{array}{llllllllllllllllllllllllllllllllllll$	er Elements ys and stack 2.5 2.5 2 0.347 W 0.845 W 0.158 W MIC COEF	FFICIENT (Unbraced of s when later /p /p FFICIENT isolated eq	S or Brace ally brac = 20 use Fr	ed or supp 2.0 feet 0.0 feet 0 = 0.	orted by the st z/h = .347 Wp Seismic Desig see ASC	0.32 0.32 In Category D & Ip=1.0, therefor E7 Section 13.1.4 for exception
Architectural Component : Cantileve Chimney Importance Factor (lp) : 1.0 Component Amplification Factor (ap) = Comp Response Modification Factor (Ω p) = Over-Strength Factor (Ω o) = Fp = 0.4apSdslpWp(1+2z/h)/Rp = not greater than Fp = 1.6SdslpWp = but not less than Fp = 0.3SdslpWp = MECH AND ELEC COMPONENTS SEIS Mech or Electrical Component : Suspend internall Importance Factor (lp) : 1.0 Component Amplification Factor (ap) = Comp Response Modification Factor (Rp) =	er Elements ys and stack 2.5 2.5 2 0.347 W 0.845 W 0.158 W MIC COEF ded vibration ly isolated co 2.5 2.5	FFICIENT (Unbraced of s when later /p /p FFICIENT isolated eq omponents.	S or Brace ally brac ally brac	ed or supp 2.0 feet 0.0 feet 0 = 0.	orted by the st z/h = .347 Wp Seismic Desig see ASC	0.32 0.32 In Category D & Ip=1.0, therefor E7 Section 13.1.4 for exception
Chimney Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) = Comp Response Modification Factor (Ω p) = Over-Strength Factor (Ω o) = Fp = 0.4apSdsIpWp(1+2z/h)/Rp = not greater than Fp = 1.6SdsIpWp = but not less than Fp = 0.3SdsIpWp = MECH AND ELEC COMPONENTS SEIS Mech or Electrical Component : Suspendinternall Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) =	er Elements ys and stack 2.5 2.5 2 0.347 W 0.845 W 0.158 W MIC COEF ded vibration ly isolated co 2.5	FFICIENT (Unbraced of s when later /p /p /p FFICIENTS isolated eq pomponents.	S or Brace ally brac ally brac	ed or supp 2.0 feet 0.0 feet 0 = 0.0 including ir 2.0 feet	orted by the st z/h = .347 Wp Seismic Desig see ASC n-line duct dev	0.32 0.32 In Category D & Ip=1.0, therefo E7 Section 13.1.4 for exceptio ices and suspended

Company Address City, State Phone			JOB TITLE JOB NO CALCULATED BY CHECKED BY		SHEET NO DATE DATE	
Rain Loads : ASCE 7- 16						
Rain Intensity i =	7.23 in/hr					
Static Head ds =	2.00 inches					
Tributary Roof Area A =	2500 SF					
Ponding Head dp =	2.00 inches					
Flow Rate Q =	188.0 gal/min					
Type of overflow device: Red	ctangular Closed S	Scupper 4" high	width =	16.0 in		
Hydraulic Head dh =	2.69 inches					
Design Rain Load R =	5.2(ds + dh + dp	o) = 3	4.8 psf at prima	ry drain		

	JOB TITLE	Company
		Address
SHEET NO.	JOB NO.	City, State
DATE	CALCULATED BY	Phone
DATE	CHECKED BY	

Tornado Loads : Change Code to ASCE 7-22 or 2024 IBC to design for tornados

Risk Catego	N.	Ш	-	Tornado F	esign is not require	ed for Risk Cateo	orv I or II
Effective Pla	-	50,000		0	oolgin io not roquint	a for those catog	
Tornado Spe		120.0 mph					
Ground EL F		1.00					
Exposure Co	· · /	1.00					
Enclosure Cl	. ,	Enclosed Buildin	a				
	sure Coefficient:		3				
·		itive 0.55					
		ative -0.18					
Directionality	Factor (KdT):						
	MW	FRS 0.80	use 1.00				
	C&C Roof Zor	ne 1' 1.00	Ess	ential Fac	ility		
	C&C for all ot						
	Rooftop equipr						
Other stru	uctures, use wind	d Kd					
				($q_{hT} = .00256 K_{hTc}$	_{or} K _e V _T ^2 =	36.9 psf
Tornado Gue	st Effect Factor	<u>G_T</u>					
h =	62.0 ft						
B =	175.0 ft						
/z (0.6h) =	37.2 ft						
ē =	0.20						
ε =	500 ft						
∠ _{min} =	15 ft						
C =	0.20						
$g_Q, g_v =$	3.4						
L _z =	512.1 ft						
Q =	0.85 0.20						
$I_z =$			•				
G _T =	0.85 <	use Gt = 0.85	G =	0.85	Using default Gt		

<u>Tornado Pressure Coefficient Adjustment Factor for Vertical Winds K_{vT} </u>

Buildings Negative (uplift) pressures on Roofs Main Wind Force Resisting System Components and Cladding: Roof Angle (θ) = 1.2 deg	1.10				
Roof Slope ≤ 7 d	egrees				
Zone 1	1.20				
Zone 2	1.05				
Zone 3	1.05				
Positive (downward) pressures on Roofs	1.00				
Wall Presures	1.00				
All Other Cases	1.00				
Other Structures Negative (uplift) pressures on Rooftop Structures and Equipment and Rooftop Solar Panels Parallel to the Roof Surface					
Main Wind Force Resisting System	1.10				
Components and Cladding:	1.00				
All other cases	1.00				

Company	JOB TITLE	
Address		
City, State	JOB NO.	SHEET NO.
Phone	CALCULATED BY	DATE
	CHECKED BY	DATE

Change Code to ASCE 7-22 or 2024 IBC to design for tornados

K _{dT} =	1.00			E	nclosed Buil	ding
Tornado Base pressure $(q_{hT}) =$	36.9 psf	Bldg dim parallel to ridge =	300.0 ft	GC _{piT} =	+ 0.55	-0.18
Roof Angle (θ) =	1.2 deg	Bldg dim normal to ridge =	175.0 ft	G _T =	0.85	
Roof tributary area	:	h =	62.0 ft		qi = qhT	
Wind normal to ridge =(h/2)*L:	9300 sf	ridge ht =	63.8 ft			
Wind parallel to ridge =(h/2)*L:	5425 sf	Roof Uplift KvT =	1.10			
		Walls & Positive Roof KvT =	1.00			

Ultimate Tornado Surface Pressures (psf)

	Wind Normal to Ridge			Wind Parallel to Ridge					
	L/B = 0.58 $h/L = 0.35$		0.35	L/B = 1.71 h/L = 0.21			0.21		
Surface	Ср	+++	w/+q _i GC _{piT}	w/- $q_h GC_{piT}$	Dist.*	Ср	+++	w/ +q _i GC _{piT}	w/ -q_hGC_{piT}
Windward Wall (WW) @ h	0.80	25.1	4.8	31.7		0.80	25.1	4.8	31.7
Leeward Wall (LW) @ h	-0.50	-15.7	-35.9	-9.0		-0.36	-11.2	-31.5	-4.6
Side Wall (SW) @ h	-0.70	-21.9	-42.2	-15.3		-0.70	-21.9	-42.2	-15.3
Leeward Roof (LR)		**					Included in	windward roof	
Neg Windward Roof: 0 to h/2*	-0.90	-31.0	-51.3	-24.4	0 to h/2*	-0.90	-31.0	-51.3	-24.4
h/2 to h*	-0.90	-31.0	-51.3	-24.4	h/2 to h*	-0.90	-31.0	-51.3	-24.4
h to 2h*	-0.50	-17.2	-37.5	-10.6	h to 2h*	-0.50	-17.2	-37.5	-10.6
> 2h*	-0.30	-10.3	-30.6	-17.0	> 2h*	-0.30	-10.3	-30.6	-3.7
Pos/min windward roof press.	-0.18	-6.2	-26.5	1.0	Min press.	-0.18	-6.2	-26.5	1.0

For monoslope roofs, entire roof surface is either windward or leeward surface

+++ is q_{hT}K_{dT}K_{vT}GCp

*Horizontal distance from windward edge

**Roof angle < 10 degrees. Therefore, leeward roof is included in windward roof pressure zones.

Windward roof overhangs : 25.1 psf (upward : add to +++ windward roof pressure)

Parapet

Z	KzTor	qpT (psf)	
64.0 ft	1.000	36.9	
Windwa	ard parapet:	55.3 psf	(GCpn = +1.5)
Leewa	ard parapet:	-36.9 psf	(GCpn = -1.0)

Wall Pressures at "z" (psf)

<u>Wall Pressures at "z" (psf)</u>				Leeward Wall				Combined W	'W + LW			
			Windward	Wall	Normal	Parallel	Side Wa	alls	Wind Normal	Wind Parallel		
	z	KzTor	q _{zT}	qKKGC _p	w/+q _i GC _{pi}	w/-q _h GC _{pi}	w/+q _i GC _{pi}	w/+q_hGC_{pi}	w/+q_iGC_{pi}	w/-q_hGC_{pi}	to Ridge	to Ridge
	0 to 200'	1.000	36.9	25.1	4.8	31.7	-35.9	-31.5	-42.2	-15.3	40.7	36.3

WR /wr. WR. LW/ SW ww DIRECTION WIND PARALLEL TO RIDGE

WR.

Company					
Address					
City, State					

Phone

JOB TITLE

SHEET NO.	JOB NO.
DATE	CALCULATED BY
DATE	CHECKED BY

Change Code to ASCE 7-22 or 2024 IBC to design for tornados

Tornado Base pressure (q _{hT}) = Essential Facility K _{dT} =	 Min parapet ht = h =	2.0 ft 62.0 ft	$K_v T$ neg zone 1 = 1.20 $K_v T$ neg zone 2 = 1.05
Roof Zone 1' K _{dT} = Roof Angle (θ) =	a =	17.5 ft	K_vT neg zone 3 = 1.05 K_vT pos roof = 1.00
Type of roof = Enclosed Building	GCpiT = qi = qhT =	+ 0.55 -0.18 36.9 psf	$K_v T$ wall = 1.00

GCp 100 sf

-0.80

-1.40

0.75

20 sf

-0.90

-1.80

0.90

Area

Negative Zone 4

Negative Zone 5

Positive Zone 4 & 5

Roof			GCp			Ultimate	Surface Pres	ssure (psf)	
	Area	10 sf	50 sf	100 sf	500 sf	10 sf	50 sf	100 sf	500 sf
	error	-1.40	-1.19	-1.11	-0.90	-82.2	-72.9	-69.4	-60.1
	error	-2.30	-2.01	-1.89	-1.60	-109.3	-98.1	-93.4	-82.2
	error	-3.20	-2.83	-2.67	-2.30	-144.1	-129.8	-123.6	-109.3
	error	-	-	-	-	16.0	16.0	16.0	16.0
	error	-2.30	-2.04	-1.91	-1.60	-95.1	-83.9	-78.4	-65.6
	error	-3.20	-2.86	-2.69	-2.30	-122.2	-109.0	-102.6	-87.7
	error	-4.10	-3.67	-3.47	-3.00	-157.0	-140.6	-132.8	-114.8
	error	-5.00	-4.40	-4.07	-3.30	-190.2	-167.5	-155.0	-125.9
	error								
	error								

User input						
50 sf	250 sf					
-73.1	-64.0					
-98.2	-87.0					
-129.8	-115.5					
16.0	16.0					
-83.9	-71.1					
-109.0	-94.1					
-140.6	-122.6					
-167.5	-138.4					

Overhang pressures are from ASCE 7-22 procedure and assume internal pressure coef of 0.0 Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 20.3 psf)

Parapet pT K

Walls

KdT=	36.9 psf			Ultimate S	Surface Pres	ssure (psf)		
		Solid Parapet Pressure	10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
		error error	118.0 151.1		104.2 134.3		90.3 117.8	81.1 109.6
		error error						
		enor						
		error	-66.4	-66.4	-61.1	-57.1	-53.2	-47.9
		error	-99.5	-99.5	-88.0	-79.3	-70.5	-59.0

500 sf

-0.70

-1.00

0.60

200 sf

-0.76

-1.23

0.69

NOTE: Negative zones 4 & 5 pressures apply to all heights. Positive pressures vary with height, see below.

User input
200 sf
90.3 117.8
-53.2 -70.5

	User input			
500 sf	100 sf	500 sf		
-46.1	-49.8	-46.1		
-57.1	-71.9	-57.1		
28.8	34.3	28.8		

Wall surfac	e pressure	at 'z'		Positiv	ve zone 4 &	5 (psf)	
Z	KzTor	KdT KvT	qz (psf)	20	100	200	500
0 to 200	1.00	1.00	36.9	39.8	34.3	31.9	28.8

20 sf

-53.5

-86.6

39.8

Ultimate Surface Pressure at h

100 sf

-49.8

-71.9

34.3

200 sf

-48.2

-65.5

31.9

User input					
100 sf	500 sf				
34.3	28.8				

SHEET NO.	
DATE	
DATE	
	DATE

Roof Design Loads

Items	Description	Multiple	psf (max)	psf (min)
Roofing	3 ply felt & gravel		5.5	5.0
Decking	Metal Roof deck, 1.5, 22 ga.		1.7	1.2
Framing	Steel roof joists & girders		3.0	2.0
Insulation	Rigid insulation, per 1"	x 2.0	3.0	1.4
Ceiling	Suspended acoustical tile		1.8	1.0
Mech & Elec	Mech. & Elec.		2.0	0.0
Misc.	Misc.		0.5	0.0
			0.0	0.0
	Actual E	Dead Load	0 17.5	O 10.6
	Use this [DL instead	20.0	9.0
		Live Load	20.0	0.0
		Snow Load	20.5	0.0
	Ultimate Wind (zor	ne 2 - 100 sf)	16.0	-69.9
ASD Loading		D + S	40.5	-
	D + 0.75(0.6*W + S)	42.5	-
	0.6	6*D + 0.6*W	-	-36.5
LRFD Loading	1.2D + 1.	6S +0.5W	64.7	-
	1.2D + 1	.0W + 0.5S	50.2	-
	().9D + 1.0W	-	-61.8

Roof Live Load Reduction

<u>Roof angle</u> 0.25 / 12 1.2 deg

0 to 200 sf: 20.0 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12.0 psf

	300 sf	18.0 psf
	400 sf	16.0 psf
	500 sf	14.0 psf
User Input:	450 sf	15.0 psf

JOB TITLE

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Items	Description	Multiple	psf (max)	psf (min)
Flooring	Carpet & pad		1.0	1.0
Topping	Concrete lightwt per 1"	x 4.5	45.0	38.3
Decking	Metal Floor deck - 2", 20ga		2.0	1.5
Framing	Steel floor bms/joists & girders		8.0	5.0
Topping	Deflection Concrete		12.5	2.0
Ceiling	Suspended acoustical tile		1.8	1.0
Sprinklers	Sprinklers		2.0	0.0
Mech & Elec	Mech. & Elec.		2.0	0.0
Misc.	Misc.		0.5	0.0
	Actua	al Dead Load	0 74.8	48.8
	Use th	is DL instead	80.0	○ 65.0
		Partitions	15.0	0.0
		Live Load	50.0	0.0
	Tc	tal Live Load	65.0	0.0
		Total Load	145.0	48.8

Floor Design Loads

FLOOR LIVE LOAD REDUCTION (not including partitions)

NOTE: Not allowed for assembly occupancy or LL>100psf or passenger car garages, except may reduce members supporting 2 or more floors & non-assembly 20%.

			IBC alternate procedure	
			Smallest of:	
	L=Lo(0.25+15/√K _{LL} /	A _T)	R= .08%(SF - 150)	
Unreduced design live load: L	_o = 50	psf	R= 23.1(1+D/L) =	60.1%
			R= 40% member supports ?	1 floor
Floor member & 1 floor cols	ς _{LL} =	2	R= 60% member supports 2	≥2 floors
Tributary Area	A _T = 300) sf	R =	12.0%
Reduced live load:	L = 43.1	psf	Reduced live load: L =	44.0 psf
Columns (2 or more floors) K	ς _{LL} =	4		
Tributary Area	A _T = 500) sf	R =	28.0%
Reduced live load:	L = 29.3	psf	Reduced live load: L =	36.0 psf

JOB TITLE

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

Wall Design Load #1

Items	Description	Multiple	psf (max)	psf (min)
Sheathing	7/16" plywood/OSB		1.6	1.4
Sheathing	5/8" gypsum		2.8	2.5
Framing	6" metal studs @16"		2.5	0.9
veneer	4" Clay Brick		40.0	38.0
Wall Covering	1" Wood Paneling	x 0.38	0.9	0.9
Insulation	R-11 Fiberglass insul.		0.4	0.4
Mech & Elec	Mech. & Elec.		1.0	0.0
Misc.	Misc.		0.5	0.0
	Actua	al Dead Load	○ 49.7	O 44.0
	Use th	is DL instead	• 50.0	● 40.0

Wall Design Load #2

Items	Description Multiple	psf (max)	psf (min)
Sheathing	7/16" plywood/OSB	1.6	1.4
Sheathing	5/8" gypsum	2.8	2.5
Framing	CMU wall	47.0	45.0
veneer	7/8" Stucco	10.0	10.0
		0.0	0.0
Insulation	R-11 Fiberglass insul.	0.4	0.4
Mech & Elec	Mech. & Elec.	1.0	0.0
Misc.	Misc.	0.5	0.0
	Actual Dead Load	O _{63.3}	0 59.3
	Use this DL instead	• _{65.0}	● _{55.0}

JOB TITLE

Company Address City, State Phone

JOB NO. SHEET NO. CALCULATED BY DATE CHECKED BY DATE

www.struware.com

CODE SUMMARY

Code:	International Building Code 2021
Live Loads:	
Roof 0 to 200 sf: 200 to 600 sf: over 600 sf:	24 - 0.02Area, but not less than 12 psf
Roofs used for roof gardens	100 psf
Typical Floor Partitions Corridors above first floor	50 psf 15 psf 80 psf
Lobbies & first floor corridors Stairs and exit ways	100 psf 100 psf
<u>Dead Loads:</u> Floor	80.0 psf
Roof	20.0 psf
Roof Snow Loads:	
Design Uniform Roof Snow load	= 20.5 psf
Flat Roof Snow Load Risk Category	Pf = 20.5 psf = II
Balanced Snow Load	Ps = 20.5 psf
Ground Snow Load Importance Factor	Pg = 30.0 psf I = 1.00
Snow Exposure Factor	Ce = 0.97
Thermal Factor	Ct = 1.00
Sloped-roof Factor	Cs = 1.00
Drift Surcharge load Width of Snow Drift	Pd = w =
	vv =
Earthquake Design Data:	
Risk Category	=
Importance Factor	I = 1.00
Mapped spectral response accelera	tt $Ss = 0.60 \text{ g}$ S1 = 0.10 g
Site Class	= D
Spectral Response Coef.	Sds = 0.528
	Sd1 = 0.160
Seismic Design Category	= D
Basic Structural System Seismic Resisting System	 Structural steel systems not specifically detailed for seismic resistance Structural steel systems not specifically detailed for seismic resistance
Design Base Shear	V = 0.023W
Seismic Response Coef.	Cs = 0.023
Response Modification Factor	R = 3
Analysis Procedure	= Equivalent Lateral-Force Analysis
Rain Design Data:	
Rain intensity Rain Load	<i>i</i> = 7.23 in/hr R = 34.8 psf
	$R = 54.0 \mu Si$
Wind Design Data: Ultimate Design Wind Speed	120 mph
Nominal Design Wind Speed	120 mph 92.95 mph
Risk Category	
Mean Roof Ht (h)	62.0 ft
Exposure Category	C Enclosed Building
Enclosure Classif. Internal pressure Coef.	Enclosed Building +/-0.18
Directionality (Kd)	0.85

Company

Address City, State Phone JOB TITLE

CHECKED BY

JOB NO.

SHEET NO. _____ DATE _____ DATE

www.struware.com

Component and Cladding Ultimate Wind Pressures

Roof	Surface Pressure (psf)							
Area	10 sf	20 sf	50 sf	100 sf	200 sf	350 sf	500 sf	1000 sf
Negative Zone 1	-67.4	-63.0	-57.1	-52.6	-48.2	-44.6	-42.3	-42.3
Negative Zone 1'	-38.7	-38.7	-38.7	-38.7	-33.3	-29.0	-26.2	-20.8
Negative Zone 2	-88.9	-83.2	-75.7	-69.9	-64.2	-59.6	-56.7	-56.7
Negative Zone 3	-121.2	-109.8	-94.7	-83.2	-71.8	-62.5	-56.7	-56.7
Positive All Zones	17.2	16.1	16.0	16.0	16.0	16.0	16.0	16.0
Overhang Zone 1&1'	-61.0	-59.9	-58.5	-57.4	-48.1	-40.6	-35.9	-35.9
Overhang Zone 2	-82.5	-74.9	-64.8	-57.2	-49.5	-43.4	-39.4	-39.4
Overhang Zone 3	-114.8	-101.4	-83.8	-70.4	-57.1	-46.3	-39.4	-39.4

Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 6.5 psf)

	Parapet		Solid Parapet Pressure (psf)				
	Area	10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
CASE A:	Zone 2 :	115.5	108.0	98.1	90.7	83.2	73.3
	Zone 3 :	148.0	134.8	117.3	104.0	90.8	73.3
CASE B: Int	terior zone :	-68.2	-64.8	-60.2	-56.8	-53.3	-48.7
Co	orner zone :	-78.0	-72.8	-65.9	-60.8	-55.6	-48.7

Wall	Surface Pressure (psf)				
Area	10 sf	500 sf			
Negative Zone 4	-42.0	-36.3	-34.5	-32.3	
Negative Zone 5	-51.6	-40.2	-36.8	-32.3	
Positive Zone 4 & 5	38.7	33.0	31.3	29.0	