Company
Address
City, State Phone

Company	JOB TITLE	
Address		
City, State	JOB NO.	SHEET NO.
Phone	CALCULATED BY	DATE
	CHECKED BY	DATE

STRUCTURAL CALCULATIONS

FOR

Code Search

Code: International Building Code 2021

Occupancy:

```
Occupancy Group \(=\quad B \quad\) Business
```

Risk Category \& Importance Factors:

Risk Category $=$	II
Wind Factor $=$	1.00
Importance Factor	1.00
Seismic Importance factor $=$	1.00

Type of Construction:
Fire Rating:

Roof $=$	0.0 hr
Floor $=$	0.0 hr

Building Geometry:

Roof angle (θ)	$0.25 / 12$	1.2 deg
Building length	300.0 ft	
Least width	175.0 ft	
Mean Roof Ht (h)	62.0 ft	
Parapet ht above grd	64.0 ft	
Minimum parapet ht	2.0 ft	
hb for Elevated bldg	0.0 ft	

Live Loads:

Roof $\quad 0$ to 200 sf: 20 psf 200 to 600 sf: 24-0.02Area, but not less than 12 psf over 600 sf : 12 psf

Roofs used for roof gardens 100 psf
Floor:

Typical Floor	50 psf
Partitions	15 psf
Corridors above first floor	80 psf
Lobbies \& first floor corridors	100 psf
Stairs and exit ways	100 psf

\square

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads:

Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Bldg Directionality (Kd) Kh MWFRS<=60 Kh all other Type of roof

Topographic Factor (Kzt)

Topography		Flat
Hill Height	(H)	80.0 ft
Half Hill Length (Lh)		100.0 ft
Actual H/Lh	$=$	0.80
Use H/Lh	$=$	0.50
Modified Lh	$=$	160.0 ft
From top of crest:x	50.0 ft	
Bldg up/down wind?	downwind	

$$
\begin{array}{ll}
\mathrm{H} / \mathrm{Lh}=0.50 & \mathrm{~K}_{1}=0.000 \\
\mathrm{x} / \mathrm{Lh}=0.31 & \mathrm{~K}_{2}=0.792 \\
\mathrm{z} / \mathrm{Lh}=0.39 & \mathrm{~K}_{3}=1.000
\end{array}
$$

At Mean Roof Ht:

$$
\mathrm{Kzt}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{\wedge} 2=1.00
$$

ESCARPMENT

2D RIDGE or 3D AXISYMMETRICAL HILL

Gust Effect Factor

h	$=$	62.0 ft	
B	$=$		175.0 ft
$/ \mathrm{z}(0.6 \mathrm{~h})$	$=$		37.2 ft

Flexible structure if natural frequency $<1 \mathrm{~Hz}$ ($\mathrm{T}>1$ second). If building $h / B>4$ then may be flexible and should be investigated.
$h / B=0.35$
$\mathbf{G}=\quad 0.85$ Using rigid structure default

Rigid Structure		
$\overline{\mathrm{e}}$	$=0.20$	
ℓ	$=$	500 ft
$\mathrm{Z}_{\text {min }}$	$=$	15 ft
C	$=$	0.20
$\mathrm{~g}_{\mathrm{Q}}, \mathrm{g}_{\mathrm{v}}$	$=$	3.4
$\mathrm{~L}_{\mathrm{z}}$	$=$	512.1 ft
Q	$=$	0.85
I_{z}	$=$	0.20
G	$=$	$\mathbf{0 . 8 5}$ use $\mathrm{G}=0.85$

Flexible or Dynamically Sensitive Structure
Natural Frequency $\left(\eta_{1}\right)=0.7 \mathrm{~Hz}$
Damping ratio $(\beta)=0.01$
$/ b=0.650$
$/ \alpha=0.154$
$\mathrm{Vz}=\quad 116.5$
$\mathrm{N}_{1}=\quad 3.08$
$\mathrm{K}_{\mathrm{n}}=0.069$
$R_{h}=0.419 \quad \eta=1.713 \quad h=62.0 \mathrm{ft}$
$R_{B}=0.185 \quad \eta=4.836$
$R_{L}=0.035 \quad \eta=27.753$
$g_{R}=4.104$
$R=0.540$
$\mathrm{Gf}=0.960$

Ground Elevation Factor (Ke)

Grd level above sea level $=$	0 ft	$\mathrm{Ke}=1.0000$
Constant $=$	0.00256	

Enclosure Classification

Test for Enclosed Building:
Ao $<0.01 \mathrm{Ag}$ or 4 sf , whichever is smaller
Test for Open Building: All walls are at least 80% open.
Ao $\geq 0.8 \mathrm{Ag}$
Test for Partially Enclosed Building: Predominately open on one side only

	Input		Test	
Ao	500.0	Ao ≥ 1.1 Aoi	NO	
Ag	600.0	Ao > 4sf or 0.01 Ag	YES	
Aoi	1000.0	Aoi / Agi ≤ 0.20	YES	Building is NOT
Agi	10000.0			Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:
Ao ≥ 1.1 Aoi
Ao > smaller of 4 sf or 0.01 Ag
Aoi / Agi ≤ 0.20
Where:
Ao = the total area of openings in a wall that receives positive external pressure.
$\mathrm{Ag}=$ the gross area of that wall in which Ao is identified.
Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.
$\mathrm{Agi}=$ the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.
Test for Partially Open Building: A building that does not qualify as open, enclosed or partially enclosed.
(This type building will have same wind pressures as an enclosed building.)

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall \& roof openings (Aog):		-	SF
Unpartitioned internal volume (Vi):	$\mathrm{Ri}=$	-CF	

\qquad
\square SHEET NO.

Wind Loads - MWFRS all h (Except for Open Buildings)

\qquad
\qquad SHEET NO.

Horizontal MWFRS wind pressures on objects below hb

$\mathrm{h}=$	62.0 ft
hb	$=$
$\mathrm{z}=$	0.0 ft
	15.5 ft

Elevated Building Geometry limitation 1
Bldg Length $=300.0 \mathrm{ft}$
Bldg Width $=175.0 \mathrm{ft} \quad$ Area of below elements $/$ Area of Bldg above $=\quad 0.2 \%$
Cross setional area of all columns below bldg = $64.0 \mathrm{sf} \quad$ Direction $1 \mathrm{~L} / \mathrm{B}=0.58 \mathrm{Max} \mathrm{L/B}=0.500 \mathrm{OK}$
Area of onclosed areas below bid
Total cross sectional area below bldg \qquad Direction $2 \mathrm{~L} / \mathrm{B}=1.71 \quad \mathrm{MaxL} / \mathrm{B}=$ 0.500 OK

Elevated Building Geometry limitation 2

Direction 1

Projected width of all columns facing direction $1=$ Projected L2 width of enclosed areas below bldg = Total projected width below bldg (width) =

Projected area ratio $=\quad 24.0 \% \mathrm{OK}$

Direction 2
Projected width of columns direction 2
Projected L1 width of enclosed areas 30.0 ft otal projected width below bldg (width) $=$

Projected area ratio $=\quad 41.1 \% \mathrm{OK}$
Meets geometry Limitation No 2 for both directions
$\mathrm{hb}=0$, therefore building is not an elevated building

ELEVATION

Combined MWFRSwindward and leeward wind pressure on surfaces from 0 to hb (qzGCp) = MWFRS direction 1 force at height hb (width*hb/2) = MWFRS direction 2 force at height hb (width*hb/2) =
0.0 pst
0.0 k 0.0 k

Vertical MWFRS wind pressures on bottom surface of the elevated building

Base pressure $(\mathrm{qz})=\quad 0.0 \mathrm{psf}$
Ultimate Vertical MWFRS Wind Surface Pressures (psf) at horizontal bottom surface of elevated building

	Wind Normal to Ridge				Wind Parallel to Ridge				
	L/B $=0.58$		$\mathrm{hb} / \mathrm{L}=0.00$			L/B $=1.71$		$\mathrm{hb} / \mathrm{L}=0.00$	
	Cp	$\mathrm{q}_{\mathrm{n}} \mathrm{GC}_{\mathrm{p}}$	$\mathrm{w} /+\mathrm{q} \cdot \mathrm{GC}_{\mathrm{pi}}$	w/-qnGCpi	Dist.*	Cp	$\mathrm{qh}_{\mathrm{h}} \mathrm{C}_{\mathrm{p}}$	$\mathrm{w} /+\mathrm{q}_{\mathrm{i}} \mathrm{GC}_{\mathrm{pi}}$	$\mathrm{w}^{\prime} /-\mathrm{q}_{\mathrm{n}} \mathrm{GC}_{\mathrm{pi}}$
Downward pressure: 0 to hb/2*	-0.90	0.0	0.0	0.0	0 to hb/2*	-0.90	0.0	0.0	0.0
$\mathrm{hb} / 2 \mathrm{to} \mathrm{hb*}$	-0.90	0.0	0.0	0.0	$\mathrm{hb} / 2$ to hb^{*}	-0.90	0.0	0.0	0.0
hb to 2hb*	-0.50	0.0	0.0	0.0	hb to 2hb*	-0.50	0.0	0.0	0.0
> 2hb*	-0.30	0.0	0.0	0.0	> 2hb*	-0.30	0.0	0.0	0.0
Upward or min wind pressure	-0.18	0.0	0.0	0.0	Min press.	-0.18	0.0	0.0	0.0

\qquad SHEET NO.
\qquad
CALCULATED BY \qquad
CHECKED BY DATE DATE

NOTE: ASCE 7 requires the application of full and partial loading of the wind pressures per the 4 cases below.

CASE 2
CASE 4

Wind Forces at Floors

Total Floors above grade $=$	2
T/Fdn (dist below grade) $=$	2.0 ft

Building dimension (parallel with ridge)	$=$	300.0 ft	$\mathrm{e}=$
Building dimension (normal to ridge)	$=$	175.0 ft	$\mathrm{e}=$
building dimension parallel to the wind direction	26.25 ft		
btt			

| JOB TITLE |
| ---: | ---: |
| JOB NO. |
| CALCULATED BY |
| CHECKED BY |

Wind Loads - MWFRS $\mathbf{h} \leq 6 \mathbf{0}^{\prime}$ (Low-rise Buildings) except for open buildings

		$\mathrm{Kz}=\mathrm{Kh}=$	1.144	Edge Strip (a) =	17.5 ft
Base pressure (qh) =	35.9 psf			End Lone (2a) =	35.0 tt
GCpi $=$	+/-0.18			Zone 2 length	87.5 ft

Wind Pressure Coefficients

Surface	CASE A				CASE B		
	GCpf	$\begin{aligned} & \hline \theta=1.2 \mathrm{deg} \\ & \mathrm{w} /-\mathrm{GCpi} \end{aligned}$	w/+GCpi		GCpf	w/-GCpi	w/+GCpi
1	0.40	0.58	0.22		-0.45	-0.27	-0.63
2	-0.69	-0.51	-0.87		-0.69	-0.51	-0.87
3	-0.37	-0.19	-0.55		-0.37	-0.19	-0.55
4	-0.29	-0.11	-0.47		-0.45	-0.27	-0.63
5					0.40	0.58	0.22
6					-0.29	-0.11	-0.47
1E	0.61	0.79	0.43		-0.48	-0.30	-0.66
2E	-1.07	-0.89	-1.25		-1.07	-0.89	-1.25
3E	-0.53	-0.35	-0.71		-0.53	-0.35	-0.71
4E	-0.43	-0.25	-0.61		-0.48	-0.30	-0.66
5E					0.61	0.79	0.43
6E					-0.43	-0.25	-0.61

Ultimate Wind Surface Pressures (psf)

1	20.8	7.9		-9.7	-22.6
2	-18.3	-31.2			
3	-6.8	-19.7		-18.3	-31.2
4	-3.9	-16.9		-6.8	-19.7
5			-9.7	-22.6	
6	28.3	15.4		-30.8	7.9
1 E	-31.9	-44.8	-3.9	-16.9	
2 E	-12.6	-25.5	-10.8	-23.7	
3 E	-9.0	-21.9	-31.9	-44.8	
4 E			-12.6	-25.5	
5 E			-10.8	-23.7	
6 E			28.3	15.4	

Parapet

Windward parapet = Leeward parapet =
$54.2 \mathrm{psf} \quad(\mathrm{GCpn}=+1.5)$ $-36.1 \mathrm{psf} \quad(\mathrm{GCpn}=-1.0)$

Windward roof
overhangs = $25.1 \mathrm{psf}($ upward $)$ add to

Horizontal MWFRS Simple Diaphragm Pressures (psf)
Transverse direction (normal to L)

Interior Zone: Wall	24.7 psf
Roof	-11.5 psf
End Zone: Wall	37.3 psf
Roof	-19.4 psf *

Longitudinal direction (parallel to L)
Interior Zone: Wall 24.7 psf
End Zone: Wall 37.3 psf
${ }^{* *}$ NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

\qquad

JOB NO. SHEET NO

CALCULATED BY \qquad DATE
DATE

Wind Loads - $\mathrm{h} \leq 60^{\prime}$ Longitudinal Direction MWFRS On Open or Partially
Enclosed Buildings with Transverse Frames and Pitched Roofs

Base pressure (qh) =

$$
\mathrm{GCpi}=\quad+/-0.18 \text { Enclosed bldg, procdure doesn't apply }
$$

Roof Angle $(\theta)=1.2$ deg

$\mathrm{B}=$	175.0 ft
\# of frames $(\mathrm{n})=$	4
Solid are of end wall including fascia $(\mathrm{As})=$	26.0 sf
Roof ridge height	$=$
Roof eave height	$=$
63.8 ft	
62.0 ft	
Total end wall area if soild $(\mathrm{Ae})=$	$11,009.5 \mathrm{sf}$

Longidinal Directional Force (F) $=\mathrm{pAe}$
$\mathrm{p}=\mathrm{qh}$ [(GCpf)windward -(GCpf)leeward] $\mathrm{K}_{\mathrm{B}} \mathrm{K}_{\mathrm{S}}$
Solidarity ratio $(\Phi)=0.002$
$\mathrm{n}=\quad 4$
$K B=\quad 0.8$
$K S=0.673$
Zones 5 \& 6 area $=\quad 9,917 \mathrm{sf}$
$5 \mathrm{E} \& 6 \mathrm{E}$ area $=1,093 \mathrm{sf}$
(GCpf) windward $-(G C p f)$ leeward] $=0.725$
$\mathrm{p}=14.0 \mathrm{psf}$

Total force to be resisted by MWFRS $(F)=154.1$ kips applied at the centroid
of the end wall area Ae

Note: The longidudinal force acts in combination with roof loads calculated elsewhere for an open or partially enclosed building.

NOTE: Torsional loads are 25% of zones 1-6.
Exception: One story buildings $\mathrm{h}<30^{\prime}$ and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-98 \& ASCE 7-10 (\& later) - MWFRS wind pressure zones

NOTE: Torsional loads are 25% of zones 1 - 4 . See code for loading diagram.
Exception: One story buildings $\mathrm{h}<30$ ' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones

Company Address	JOB TITLE	
City, State	job no.	SHEET NO.
Phone	Calculated by	date
	CHECKED BY	DATE

Ultimate Wind Pressures
Wind Loads - Components \& Cladding : Alternate design $60^{\circ}<\mathrm{h}<90^{\prime}$
100.0 ft
100.0 ft
100.0 ft

User input	
80 sf	200 sf
-54.1	-48.2
-38.7	-33.3
-71.8	-64.2
-86.9	-71.8
16.0	16.0
-57.7	-48.1
-59.6	-49.5
-74.7	-57.1

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0
Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 6.5 psf)

Parapet

Walls	GCp +/- GCpi				Surface Pressure at h			
Area	10 sf	100 sf	200 sf	500 sf	10 sf	100 sf	200 sf	500 sf
Negative Zone 4	-1.17	-1.01	-0.96	-0.90	-42.0	-36.3	-34.5	-32.3
Negative Zone 5	-1.44	-1.12	-1.03	-0.90	-51.6	-40.2	-36.8	-32.3
Positive Zone 4 \& 5	1.08	0.92	0.87	0.81	38.7	33.0	31.3	29.0

User input	
100 sf	200 sf
-36.3	-34.5
-40.2	-36.8
33.0	31.3

Note: GCp reduced by 10% due to roof angle $<=10 \mathrm{deg}$.
\qquad SHEET NO.
Phone

CALCULATED BY

\qquad DATE
\qquad CHECKED BY D DATE

Bottom Horizontal Surface of Elevated Buildings

	1.14	$\mathrm{~h}=$	62.0 ft	$0.2 \mathrm{hb}=$
Base pressure $(\mathrm{qh})=$	35.9 psf	$\mathrm{hb}=$	0.0 ft	$0.6 \mathrm{hb}=$
Wall width $=$	5.0 ft			$\mathrm{ab}=$
			0.00	

	GCp				Area			
	10 sf	100 sf	500 sf	1000 sf	10 sf	100 sf	500 sf	1000 sf
Negative Zone 1	-1.70	-1.29	-1.00	-1.00	-67.4	-52.6	-42.3	-42.3
Negative Zone 1'	-0.90	-0.90	-0.55	-0.40	-38.7	-38.7	-26.2	-20.8
Negative Zone 2	-2.30	-1.77	-1.40	-1.40	-88.9	-69.9	-56.7	-56.7
Negative Zone 3	-3.20	-2.14	-1.40	-1.40	-121.2	-83.2	-56.7	-56.7
Positive Zones 1-3	0.30	0.20	0.20	0.20	17.2	16.0	16.0	16.0
Negative Zone 4'	-0.99	-0.83	-0.72	-0.72	-42.0	-36.3	-32.3	-32.3
Positive Zone 4'	0.90	0.74	0.63	0.63	38.7	33.0	29.0	29.0

User input	
80 sf	200 sf
-54.1	-48.2
-38.7	-33.3
-71.8	-64.2
-86.9	-71.8
16.0	16.0
-36.8	-34.5
33.6	31.3

Building Bottom Plan: $h \leq 60^{\prime}$ and alternate design $60^{\prime}<h<90^{\prime}$

Building Bottom Plan: h> 60 feet
\qquad
\qquad SHEET NO.
Phone \qquad DATE DATE

Location of C\&C Wind Pressure Zones - ASCE 7-22

Roofs w/ $\theta \leq 10^{\circ}$ and all walls $h>60^{\prime}$

Multispan Gable \& Sawtooth $\leq 10^{\circ}$
\& Gable $\theta \leq 7$ degrees \&
Multispan Gable \& Sawtooth $\leq 10^{\circ}$
$\&$ Gable $\theta \leq 7$ degrees \& Monoslope ≤ 3 degrees $h \leq 60 ' \&$ alt design $h<90^{\prime}$
WALL

Monoslope roofs
$3^{\circ}<\theta \leq 10^{\circ}$
$h \leq 60^{\prime}$ \& alt design $h<90^{\prime}$

Monoslope roofs $10^{\circ}<\theta \leq 30^{\circ}$
$h \leq 60^{\prime}$ \& alt design $h<90^{\prime}$

Gable $27^{\circ}<\theta \leq 45^{\circ}$
Hip $7^{\circ}<\theta \leq 45^{\circ}$

Multispan gable $10^{\circ}<\theta \leq 45^{\circ}$
$h \leq 60^{\prime} \&$ alt design $h<90^{\prime}$

Sawtooth $10^{\circ}<\theta \leq 45^{\circ}$ $h \leq 60^{\prime}$ \& alt design $h<90^{\prime}$

Stepped roofs $\theta \leq 3^{\circ}$
$h \leq 60^{\prime}$ \& alt design $h<90^{\prime}$

Note: The hatched area indicates where roof positive pressures are equal to the adjacent wall positive pressure.
\qquad

JOB NO.	SHEET NO.		
CALCULATED BY			
CHECKED BY		\quad	DATE
:---			
DATE			

Location of C\&C Wind Pressure Zones - ASCE 7-16

Roofs w/ $\theta \leq 10^{\circ}$ and all walls $h>60^{\prime}$

Walls $\mathrm{h} \leq 60^{\prime}$

\& alt design $h<90^{\prime}$

$\begin{array}{cc}\text { Multispan Gable \& Sawtooth } \leq 10^{\circ} & \\ \text { and Gable } \theta \leq 7 \text { degrees \& } & \text { Monoslope roofs } \\ \text { Monoslope } \leq 3 \text { degrees } & 3^{\circ}<\theta \leq 10^{\circ} \\ \text { h } \leq \mathbf{6 0} \& \text { alt design } \mathbf{h}<90^{\prime} & \mathbf{h} \leq \mathbf{6 0} \& \text { alt design } \mathbf{h}<9 \mathbf{0}^{\prime}\end{array}$

Monoslope roofs $10^{\circ}<\theta \leq 30^{\circ}$
$h \leq 60^{\prime} \&$ alt design $h<90^{\prime}$

Multispan Gable $>10^{\circ}$ \& Gable $7^{\circ}<\theta \leq 45^{\circ}$

Hip $7^{\circ}<\theta \leq 27^{\circ}$

$$
\begin{array}{r}
\text { Sawtooth } 10^{\circ}<\theta \leq 45^{\circ} \\
\mathbf{h} \leq 60^{\prime} \& \text { alt design } \mathbf{h}<90^{\prime}
\end{array}
$$

[^0]Note: The stepped roof zones above are as shown in ASCE 7-16. Prior editions didn't show zones, but the notes sent you to the low slope gable figure. The note in ASCE 7-16 still sends you to the low slope gable figure, but for some reason the zones shown are per editions prior to ASCE 7-16. Therefore, the above zones may be a code mistake and the correct zone locations may be per the low slope gable roof shown at the top of this page.
\qquad
\qquad SHEET NO.
CALCULATED BY \qquad DATE DATE

Location of C\&C Wind Pressure Zones - ASCE 7-10 \& earlier

Roofs w/ $\theta \leq 10^{\circ}$ and all walls $h>60^{\prime}$

Walls $\mathrm{h} \leq \mathbf{6 0}^{\prime}$ \& alt design $h<90^{\prime}$

Monoslope roofs $10^{\circ}<\theta \leq 30^{\circ}$ $h \leq 60^{\prime} \&$ alt design $h<90^{\prime}$

Multispan Gable > 10° \& Gable $7^{\circ}<\theta \leq 45^{\circ}$

Hip $7^{\circ}<\theta \leq 27^{\circ}$

Sawtooth $10^{\circ}<\theta \leq 45^{\circ}$ $h \leq 60^{\prime}$ \& alt design $h<90^{\prime}$

Stepped roofs $\theta \leq 3^{\circ}$ $h \leq 60^{\prime} \&$ alt design $h<90^{\prime}$

Note: The hatched area indicates where roof positive pressures are equal to the adjacent wall positive pressure.
\square

Wind Loads - Open Buildings

Type of roof = Monoslope Free Roofs
Wind Flow = Clear

$\mathrm{G}=$	0.85
Roof Angle $=$	1.2 deg

NOTE: The code requires the MWFRS be designed for a minimum pressure of 16 psf.

Main Wind Force Resisting System

$$
\mathrm{Kz}=\mathrm{Kh}=1.144 \quad \text { Base pressure }(\mathrm{qh})=\quad 35.9 \text { psf }
$$

Roof pressures - Wind Normal to Ridge

Wind Flow	Load Case		Wind Direction $y=0 \& 180 \mathrm{deg}$	
			Cnw	CnI
Clear Wind Flow	A	$\mathrm{Cn}=$	1.20	0.30
		$\mathrm{p}=$	36.6 psf	9.1 psf
	B	$\mathrm{Cn}=$	-1.10	-0.10
		p=	-33.5-psf	-3.0-psf

NOTE: 1). Cnw and Cnl denote combined pressures from top and bottom roof surfaces.
2). Cnw is pressure on windward half of roof. Cnl is pressure on leeward half of roof.
3). Positive pressures act toward the roof. Negative pressures act away from the roof.

Roof pressures - Wind Parallel to Ridge, $\mathbf{\gamma = 9 0} \mathbf{~ d e g}$

Wind Flow	Load Case		Horizontal Distance from WindwardEdge			$\begin{array}{r} \mathrm{h}= \\ 2 \mathrm{~h}= \end{array}$	$\begin{array}{r} 62.0 \mathrm{ft} \\ 124.0 \mathrm{ft} \end{array}$
			< h	>h $\leq 2 \mathrm{~h}$	> 2 h		
Clear Wind Flow	A	$\mathrm{Cn}=$	-0.80	-0.60	-0.30		
		p=	-24.4 psf	-18.3 psf	-9.1 psf		
	B	$\mathrm{Cn}=$	0.80	0.50	0.30		
		$\mathrm{p}=$	24.4 psf	15.2 psf	9.1 psf		

Fascia Panels -Horizontal pressures

$$
\mathrm{qp}=35.9 \mathrm{psf}
$$

$$
\begin{array}{crl}
\text { Windward fascia: } & 53.8 \mathrm{psf} & (\mathrm{GCpn}=+1.5) \\
\text { Leeward fascia: } & -35.9 \mathrm{psf} & (\mathrm{GCpn}=-1.0)
\end{array}
$$

Components \& Cladding - roof pressures

$\begin{aligned} \mathrm{Kz}=\mathrm{Kh} & = & 1.14 \\ \text { Base pressure (qh) } & = & 35.9 \mathrm{psf} \\ \mathrm{G} & = & 0.85 \end{aligned}$		$a=17.5 \mathrm{ft}$			$\begin{aligned} \mathrm{a}^{2} & =306.3 \mathrm{sf} \\ 4 \mathrm{a}^{2} & =1225.0 \mathrm{sf} \end{aligned}$		
	Effective Wind Area	Clear Wind Flow					
		zone 3		zone 2		zone 1	
		positive	negative	positive	negative	positive	negative
C_{N}	$\leq 306.3 \mathrm{sf}$	2.53	-3.44	1.90	-1.76	1.26	-1.15
	>306.3 - 1225 sf	1.90	-1.76	1.90	-1.76	1.26	-1.15
	$>1225 \mathrm{sf}$	1.26	-1.15	1.26	-1.15	1.26	-1.15
Wind pressure	$\leq 306.3 \mathrm{sf}$	77.0 psf	-105.0 psf	57.8 psf	-53.8 psf	38.5 psf	-35.0 psf
	$>306.3, \leq 1225 \mathrm{sf}$	57.8 psf	-53.8 psf	57.8 psf	-53.8 psf	38.5 psf	-35.0 psf
	$>1225 \mathrm{sf}$	38.5 psf	$-35.0 \mathrm{psf}$	38.5 psf	-35.0 psf	38.5 psf	-35.0 psf

SHEET NO.

DATE DATE

Location of Open Building Wind Pressure Zones

WIND DIRECTION $\gamma=0^{\circ}, 180^{\circ}$

WIND DIRECTION $y=90^{\circ}$
MAIN WIND FORCE RESISTING SYSTEM

MONOSLOPE

$\theta<10^{\circ}$

$\theta \geq 10^{\circ}$
\qquad
\qquad SHEET NO.
\qquad
\qquad CHECKED BY DATE \qquad

Wind Loads - Rooftop Structures \& Canopies

| Building $(\mathrm{L})=$ | 300.0 ft |
| ---: | ---: | ---: |
| Building $(\mathrm{B})=$ | 175.0 ft |
| Directionality $(\mathrm{Kd})=$ | 0.85 |

Rooftop Structures \& Equipment \#1

Equipment length parallel to $L=\quad 10.0 \mathrm{ft}$
Equipment length parallel to $B=\quad 5.0 \mathrm{ft}$ Height of equipment $=\quad 5.0 \mathrm{ft}$

Vertical wind pressure

| Ar | $=$ | 50.0 sf |
| ---: | :--- | ---: | :--- |
| GCr | $=$ | 1.500 |
| $\mathrm{~F}=\mathrm{qhGCr} \mathrm{Ar}$ | $=$ | $53.8 \mathrm{Ar}(\mathrm{psf})$ |
| | | |
| $\mathrm{Fv}=$ | | $\mathbf{2 . 7} \mathrm{kips}$ |

Wind normal to building B
$\mathrm{Af}=\quad 25.0 \mathrm{sf}$
$\mathrm{GCr}=\quad 1.90$
$\mathrm{F}=\mathrm{qhGCr} \mathrm{Af}=\quad$ 68.1 $\mathrm{Af}(\mathrm{psf})$
$\mathrm{Fh}=\quad 1.7 \mathrm{kips}$

Base pressure $(q h)=\quad 35.9$ psf

Rooftop Structures \& Equipment \#2

Wind normal to building L

$\mathrm{Af}=$		50.0 sf
GCr	$=$	
$\mathrm{F}=\mathrm{qhGCr} \mathrm{Af}$	$=$	
	$\mathbf{6 8 . 1} \mathrm{Af}(\mathrm{psf})$	
$\mathrm{Fh}=$		3.4 kips

$\mathrm{Fh}=\quad 3.4 \mathrm{kips}$

Equipment length parallel to $L=$	3.0 ft
Equipment length parallel to $B=$	3.0 ft
Height of equipment $=$	10.0 ft

Wind normal to building B \qquad
Af $=\quad 30.0 \mathrm{sf}$
$\mathrm{GCr}=\quad 1.90$
$\mathrm{F}=\mathrm{qhGCr} \mathrm{Af}=\quad$ 68.1 $\mathrm{Af}(\mathrm{psf})$
$\mathrm{Fh}=\quad 2.0 \mathrm{kips}$

$\mathrm{Af}=$		30.0 sf
$\mathrm{GCr}=$		1.90
$\mathrm{~F}=\mathrm{qhGCr} \mathrm{Af}=$		$\mathbf{6 8 . 1} \mathrm{Af}(\mathrm{psf})$

Af $=\quad 30.0$ sf
Base pressure $(q h)=\quad 35.9$ psf
2.0 kips

Attached Canopies on Buildings : Alternate design 60'<h<90'

ASCE 7-22 Procedure used since $h>60^{\prime}$

\qquad

Wind Pressures on Solar Panels

Ultimate Wind Pressures

Roof angle $\theta=$	1.2 deg	
Mean Roof $\mathrm{Ht} \mathrm{h}=$	62.0 ft	
Mean parapet height above roof hpt	$=$	0.00 ft
Panel edge to adjacent array or bldg edge d1	$=$	18.40 ft
Panel edge to adjacent panel edge d2	$=$	1.00 ft
Panel chord length Lp	$=$	6.00 ft
Dist from roof to lowest panel edge h1	$=$	0.80 ft
Dist from roof to highest panel edge h2	$=$	0.80 ft
Panel gap (must be 0.25 inches minimum)	$=$	0.25 in
Solar panel angle to roof surface $\omega=$	0.0 deg	

Panels parallel to roof ($\omega \leq 2 \mathrm{deg}$) all heights \& roof slope

Wind pressure $=q h(G C p)(\gamma E)(\gamma a)$
Calculate panel pressure by subtracting 6.45 psf (internal pressure) from the wind roof pressures and then multiply by the following factors (but minimum pressure shall be 16 psf)

Location	Adjustment Factor (γ_{E}) $(\gamma \mathrm{a})$				$\begin{array}{\|c\|} \hline \text { User Input } \\ \hline 21 \mathrm{sf} \\ \hline \end{array}$	$\gamma_{\mathrm{E}}=1.5$
	<10 sf	20 sf	50 sf	>100 sf		
Exposed Panel Uplift	1.20	1.02	0.78	0.60	1.01	
Non exposed Uplift	0.80	0.68	0.52	0.40	0.67	$\gamma_{E}=1.0$
All panels downward	0.80	0.68	0.52	0.40	0.67	$\gamma_{E}=1.0$

A panel is exposed if d1 to the roof edge is greater than $0.5 \mathrm{~h}=31.0 \mathrm{ft}$
and either 1) d 1 to the adjancent array is greater than 4 ft
or 2) d2 to the next adjacent panel is greater than 4 ft

SOLAR PANEL ELEVATION

Panels not parallel to roof - all heights \& roof slope <7 deg

Procedure only applies if clear distance between the roof edge and the panels is at least 4 ft
Wind pressure $=$ qh(GCrn) $\quad(\mathrm{GCrn})=\left(\gamma_{\mathrm{p}}\right)\left(\gamma_{\mathrm{c}}\right)\left(\gamma_{\mathrm{E}}\right)\left(\mathrm{GC}_{\mathrm{rn}}\right)_{\text {nom }}$

$$
\gamma \mathrm{p}=0.900 \quad \gamma \mathrm{c}=0.960 \quad \mathrm{qh}=35.86 \mathrm{psf}
$$

" A " is the effective wind area of the solar panel being considered
Normalized wind area $\mathrm{An}=\mathrm{A} * 1,000 /(\max \mathrm{Lb} \text { or } 15)^{\wedge} 2=0.336 \mathrm{~A}$
$\mathrm{Lb}=$ minimum of $0.4\left(\mathrm{hW}_{\mathrm{L}}\right)^{0.5}$ or h or $\mathrm{Ws}=54.6 \mathrm{ft}$

Location	Wind pressure for normalized area An					
	0 sf	10 sf	100 sf	500 sf	1000 sf	5000 sf
Exposed Zones	-69.7	-49.9	-30.1	-16.3	-16.0	-16.0
$\gamma_{E}=1.5 \quad$ Zone 1						
Zone 2	$\begin{gathered} -93.0 \\ -106.9 \end{gathered}$	-66.3	-39.6	-20.9	-16.7	-16.0
Zone 3		-75.9	-44.9	-23.2	-18.3	-16.0
Non Exposed Zones	-46.5	-33.3	-20.1			
$\gamma_{E}=1.0 \quad$ Zone 1				-16.0	-16.0	-16.0
Zone 2	-62.0	-44.2	-26.4	-16.0	-16.0	-16.0
Zone 3	-71.3	-50.6	-29.9	-16.0	-16.0	-16.0
$\gamma_{E}=1.0 \quad$ Zone 1	46.5	33.3	20.1	16.0	16.0	16.0
Zone 2	62.0	44.2	26.4	16.0	16.0	16.0
Zone 3	71.3	50.6	29.9	16.0	16.0	16.0

A panel is exposed if d1 to the roof edge is greater than $0.5 \mathrm{~h}=31.0 \mathrm{ft}$ and either 1) d1 to the adjancent array is $>$ the max of 4 h 2 or $4 \mathrm{ft}=4.0 \mathrm{ft}$ or 2) d2 to the adjancent panel is > the max of 4 h 2 or 4 ft

$$
\begin{array}{rl}
\mathrm{W}_{\mathrm{L}} & 300.0 \mathrm{ft} \\
\mathrm{Ws} & = \\
2 \mathrm{~h} & = \\
175.0 \mathrm{ft} \\
\hline 124.0 \mathrm{ft}
\end{array}
$$

$A=$| User input | |
| :---: | :---: |
| $A n=$10 sf

 sf $\mathrm{336sf}$ | |
| -49.9 | -16.0 |
| -66.3 | -16.7 |
| -75.9 | -18.3 |
| | |
| -33.3 | -16.0 |
| -44.2 | -16.0 |
| -50.6 | -16.0 |
| | |
| 33.3 | 16.0 |
| 44.2 | 16.0 |
| 50.6 | 16.0 |

\qquad SHEET NO. \qquad

Wind Loads - Other Structures:

Wind Factor $=$	1.00		
Gust Effect Factor $(\mathrm{G})=$	0.85 Ultimate Wind Speed $=$	120 mph	
Kzt $=$	1.00	Exposure $=$	C

A. Solid Freestanding Walls \& Solid Signs (\& open signs with less than 30% open)

		$\mathrm{s} / \mathrm{h}=$	0.25	Case A \& B		
Dist to sign top (h)	80.0 ft	$\mathrm{B} / \mathrm{s}=$	2.50		C_{f}	1.80
Height (s)	20.0 ft	Lr/s =	0.00	$F=q h$	Cf As	57.9 As
Width (B)	50.0 ft	Kz =	1.208		As $=$	10.0 sf
Wall Return (Lr) = Directionality (Kd)	$0.0 \mathrm{ft}$ 0.85	qh =	37.8 psf		F	579 lbs
Percent of open area to gross area	0.0\%	Open reduction factor $=$	1.00	Horiz dist from windward edge	CaseC	$\mathrm{F}=\mathrm{qhGCf}$ As (psf)
		Case C reduction factors		0 to s	2.43	78.0 As
		Factor if $\mathrm{s} / \mathrm{h}>0.8=$	1.00	s to 2s	1.60	51.5 As
		Wall return factor for Cf at 0 to $\mathrm{s}=$	1.00	2 s to 3s	1.15	37.0 As

B. Open Signs \& Single-Plane Open Frames (openings 30\% or more of gross area)

Height to centroid of Af (z)	15.0 ft			$\begin{aligned} \mathrm{Kz} & = \\ \text { (qz) } & =\end{aligned}$	$\begin{aligned} & 0.849 \\ & 26.6 \mathrm{psf} \end{aligned}$
Width (zero if round)	0.0 ft				
Diameter (zero if rect)	2.0 ft	$\mathrm{D}(\mathrm{qz})^{\wedge} .5=$	10.31	$\mathrm{F}=\mathrm{qz} \mathrm{G} \mathrm{Cf} \mathrm{Af}=$	24.9 Af
Percent of open area		1 =	0.65	Solid Area: $\mathrm{A}_{\mathrm{f}}=$	10.0 sf
to gross area	35.0\%	$\mathrm{C}_{\mathrm{f}}=$	1.1	F	249 lbs
Directionality (Kd)	0.85				

C. Chimneys, Tanks, \& Similar Structures

Height to centroid of $\operatorname{Af}(z) \quad 15.0 \mathrm{ft}$
Cross-Section Round
Directionality (Kd) 0.95

Height (h) $\quad 15.0 \mathrm{ft}$
Width (D) $\quad 1.0 \mathrm{ft}$
Type of Surface \quad Rough ($D^{\prime} / D=0.02$)
$\begin{aligned} \mathrm{Kz} & = \\ \text { Base pressure }(\mathrm{qz}) & = \\ & 0.849 \\ & 29.7 \mathrm{psf}\end{aligned}$
$h / D=15.00$
$\mathrm{D}(\mathrm{qz})^{\wedge} .5=5.45$

$\frac{\text { Round }}{\mathrm{C}_{\mathrm{f}}}$			
$\mathrm{F}=\mathrm{qzGCfAf}$		0.84	
$\mathrm{~A}_{\mathrm{f}}$	$=$		21.3 Af
F	$=$		10.0 sf
	213 lbs		

D. Trussed Towers

Height to centroid of Af (z) $\quad 15.0 \mathrm{ft}$

$$
\epsilon=0.27
$$

Tower Cross Section square
Member Shape flat
Directionality (Kd) 0.85

Square (wind along tower diagonal)
$\mathrm{Cf}=\quad 3.24$
$\mathrm{F}=\mathrm{qz} \mathrm{G} \mathrm{CfAf}=\quad$ 73.2 Af
Solid Area: $\mathrm{Af}=\quad 10.0 \mathrm{sf}$

$$
F=\quad 732 \mathrm{lbs}
$$

$\mathrm{Kz}=0.849$
Base pressure $(\mathrm{qz})=\quad 26.6 \mathrm{psf}$

Diagonal wind factor $=\quad 1.2$
Round member factor $=\quad 1.000$

Square (wind normal to face)	
$\mathrm{C}_{\mathrm{f}}=$	2.70
$\mathrm{~F}=\mathrm{qz} \mathrm{GCf} \mathrm{Af}=$	$\mathbf{6 1 . 0} \mathbf{~ A f}$
Solid Area: $\mathrm{A}_{\mathrm{f}}=$	10.0 sf
$\mathrm{F}=$	610 lbs

$\mathrm{F}=\mathrm{qzGCfAf}=\quad$ 61.0 Af
Solid Area: $A_{f}=10.0$ sf
$F=610 \mathrm{lbs}$
\qquad SHEET NO.

Snow Loads: ASCE 7-16

Roof slope	$=$
Horiz. eave to ridge dist (W)	$=$
Roof length parallel to ridge (L)	$=$
	300.5 ft

Type of Roof

Ground Snow Load	Pg	30.0 psf
Risk Category		II
Importance Factor	1 =	1.0
Roof R value	Rroof $=$	30
Thermal Factor	$\mathrm{Ct}=$	1.000
Exposure Factor	Ce	1.0
$\mathrm{Pf}=0.7^{*} \mathrm{Ce}^{*} \mathrm{Ct}^{*} \mathrm{l}^{*} \mathrm{Pg}$	=	20.5 psf
Unobstructed Slippery Surface		
Sloped-roof Factor	Cs =	1.00
Balanced Snow		5

Rain on Snow Surcharge Angle		1.75 deg
Code Maximum Rain Surcharge		5.0 psf
Rain on Snow Surcharge	$=$	0.0 psf
Ps plus rain surcharge	$=$	20.5 psf
Minimum Snow Load	Pm	$=$
Uniform Roof Design Snow Load	$=$	$\mathbf{2 0 . 5} \mathbf{~ p s f}$

Near ground level surface balanced snow load $=\mathbf{3 0 . 0} \mathbf{~ p s f}$

NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs

Unbalanced Snow Loads - for Hip \& Gable roofs only
Required if slope is between 7 on $12=30.26$ deg
and $2.38 \mathrm{deg}=\quad 2.38 \mathrm{deg}$ Unbalanced snow loads are not required
Windward snow load $=\quad 20.5$ psf Leeward snow load $=\quad 20.5$ psf

Snow Drift 1 - Against roof projections, parapets, etc

Up or downwind fetch	$\mathrm{lu}=$	220.0 ft
Projection height	$\mathrm{h}=$	5.2 ft
Projection width/length	$\mathrm{lp}=$	20.0 ft
Snow density	$\mathrm{y}=$	17.9 pcf
Balanced snow height	$\mathrm{hb}=$	1.14 ft
	$\mathrm{hd}=$	3.77 ft
	$\mathrm{hc}=$	4.06 ft

$\mathrm{hc} / \mathrm{hb}>0.2=3.5 \quad$ Therefore, design for drift
Drift height (hd)
Drift width $\quad \mathrm{w}=\quad 15.08 \mathrm{ft}$
Surcharge load: $\quad \mathrm{pd}=\mathrm{y}^{*} \mathrm{hd}=\quad \mathbf{6 7 . 5} \mathbf{~ p s t}$
Balanced Snow load:

$$
=\frac{20.5 \mathrm{psf}}{88.0 \mathrm{psf}}
$$

Snow Drift 2- Against roof projections, parapets, etc

Up or downwind fetch	$\mathrm{lu}=$	50.0 ft
Projection height	$\mathrm{h}=$	4.0 ft
Projection width/length	\|p =	20.0 ft
Snow density	$\mathrm{y}=$	17.9 pcf
Balanced snow height	$\mathrm{hb}=$	1.14 ft
	hd =	1.86 ft
	$\mathrm{hc}=$	2.86 ft
$\mathrm{hc} / \mathrm{hb}>0.2=2.5$	Therefore,	sign for drift
Drift height (hd)	=	1.86 ft
Drift width	w =	7.45 ft
Surcharge load:	$\mathrm{pd}=\mathrm{y}^{*} \mathrm{hd}=$	33.3 psf
Balanced Snow load:		20.5 psf

Note: If bottom of projection is at least 2 feet above hb then snow drift is not required.
\qquad SHEET NO. \qquad
\qquad DATE
DATE

Snow Loads - from adjacent building or roof:

Roof slope	$=$	Higher Roof 1.2 deg Horiz. eave to ridge dist (W)
$=$	87.5 ft	
Roof length parallel to ridge (L)	$=$	300.0 ft
Projection height (roof step) h	$=$	
Building separation s	$=$	

Lower Roof

$0.00 / 12=0.0 \mathrm{deg}$
24.0 ft

Roof length parallel to ridge $(\mathrm{L})=\quad 300.0 \mathrm{ft}$
240.0 ft

Building separation $\mathrm{s}=$
8.0 ft
5.0 ft

Type of Roof	Hip and gable w/ trussed systems	Monoslope	
Ground Snow Load	Pg	$=$	20.0 psf
Risk Category	$=$	II	20.0 psf
Importance Factor	I	$=$	1
Roof R value	Rroof	$=$	30

Thermal Factor	$\mathrm{Ct}=$	1.100	1.100
Exposure Factor	$\mathrm{Ce}=$	1.0	1.0

$\mathrm{Pf}=0.7^{*} \mathrm{Ce}^{*} \mathrm{Ct}^{*}{ }^{*} \mathrm{Pg} \quad=\quad 15.4 \mathrm{psf} \quad 15.4 \mathrm{psf}$

Unobstructed Slippery Surface		no	no
Sloped-roof Factor Cs	Cs $=$	1.00	1.00
Balanced Snow Load	Ps =	15.4 psf	15.4 psf
Rain on Snow Surcharge Angle		1.75 deg	0.48 deg
Code Maximum Rain Surcharge		5.0 psf	5.0 psf
Rain on Snow Surcharge	=	5.0 psf	5.0 psf
Ps plus rain surcharge	=	20.4 psf	20.4 psf
Minimum Snow Load P	Pm	20.0 psf	20.0 psf
Uniform Roof Design Snow Load	ad $=$	20.4 psf	20.4 psf

NOTE: Alternate spans of continuous beams and other areas shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code.

Leeward Snow Drifts - from adjacent higher roof

Windward Snow Drifts - from low roof against high roof

Lower roof length	$\mathrm{lu}=$	80.0 ft
Adj structure factor	$=$	0.75
Drift height	=	0.88 ft
Drift width	w =	3.51 ft
Surcharge load:	$\mathrm{pd}=\mathrm{y}^{*} \mathrm{hd}=$	14.6 psf
Balanced Snow load:		15.4 psf
		30.0 ps

Sliding Snow - onto lower roof	
Sliding snow $=0.4 \mathrm{Pf} \mathrm{W}=$	0.0 plf
Distributed over 15 feet $=$	0.0 psf
$\mathrm{hd}+\mathrm{hb}=$	0.93 ft
$\mathrm{hd}+\mathrm{hb}<=\mathrm{h}$ therefore sliding snow $=$	$\mathbf{0 . 0 \mathrm { psf }}$
Balanced snow load $=$	$\frac{15.4 \mathrm{psf}}{15.4 \mathrm{psf}}$

Sliding snow not required since upper roof slope is $1 / 4$ in 12 or less

Risk Category :	II
Importance Factor (le) :	1.00

Site Class: D
Ss $(0.2 \mathrm{sec})=0.60 \mathrm{~g} \quad \mathrm{Fa}=\quad 1.320$
S1 $(1.0 \mathrm{sec})=\quad 0.10 \mathrm{~g} \quad \mathrm{Fv}=\quad 2.400$
Sms $=0.792 \quad \mathrm{~S}_{\mathrm{DS}}=0.528$

Site specific ground motion analysis performed:
Sm1 0.240 -

Design Category $=\quad \mathrm{D}$
Design Category $=\quad$ C

Seismic Design Category $=$	\mathbf{D}
Redundancy Coefficient $\rho=$	1.30

Structure Type: All other building systems
Horizontal Struct Irregularities: No plan Irregularity
Vertical Structural Irregularities: No vertical Irregularity

```
Flexible Diaphragms: No
    Building System: Structural steel systems not specifically detailed for seismic resistance
    Seismic resisting system:Structural steel systems not specifically detailed for seismic resistance
System Structural Height Limit: System not permitted for this seismic design category
    Actual Structural Height (hn)=62.0 ft
                        See ASCE7 Section 12.2.5 for exceptions and other system limitations
```


DESIGN COEFFICIENTS AND FACTORS

Response Modification Coefficient (R) =	3	To $=0.2(\mathrm{Sd} 1 / \mathrm{Sds})=$	0.061
Over-Strength Factor ($\Omega \mathrm{o}$) =		$\begin{array}{r} \text { Ts }=\text { Sd1 } / \mathrm{Sds}= \\ \text { Long Period Transition Period }(\mathrm{TL})= \end{array}$	0.303
Deflection Amplification Factor (Cd) =			error, you need to enter TL (see link above right)
$\mathrm{S}_{\text {DS }}=$	0.528		
$\delta_{\text {D1 }}=$	0.160		
Seismic Load Effect (E) =	+/-Ev $=\rho Q_{E}+/-0.2 S_{\text {DS }} D$	$=1.3 \mathrm{Qe}+/ 0.106 \mathrm{D}$	$Q_{E}=$ horizontal seismic force
Special Seismic Load Effect (Em) =	+/-Ev $=\Omega 20 Q_{E}+/-0.2 S_{D S} D$	= \&G40\&"(0.106D	D = dead load
ALLOWABLE STORY DRIFT			
Structure Type: All other structures			
Allowable story drift $\Delta \mathrm{a}=0.020 \mathrm{hsx}$	ere hsx is the story height below	vel x	

PERMIIIED ANALYIICAL PROCEDURES

Index Force Analysis - Method Not Permitted (only applies to Seismic Category A)
Model \& Seismic Response Analysis - Permitted (see code for procedure)
Equivalent Lateral-Force (ELF) Analysis - Permitted

Builaing perıoa coet. $\left(\mathrm{C}_{\mathrm{T}}\right)=0.020$
Approx fundamental period $(\mathrm{Ta})=\quad \mathrm{C}_{\mathrm{T}} \mathrm{h}_{\mathrm{n}}{ }^{\mathrm{x}}=\quad 0.442 \mathrm{sec} \quad \mathrm{x}=0.75 \quad \mathrm{Tmax}=\mathrm{CuTa}=0.698 \mathrm{sec}$
User calculated fundamental period =

Seismic response cor. (Cs)
need not exceed Cs = Sd1 I TL/RT^2 $=0.000$
but not less than $\mathrm{Cs}=0.044$ Sds $^{*} \mid=0.023$
USE Cs = 0.023
Design Base Shear V = 0.023W

SEISMIC FORCES AT FLOORS - ELF Procedure

Stories =	1	Floor Dead Load =	80.0 psf
uilding length $L=$	300.0 ft	Floor LL to include =	0.0 psf
ilding width $\mathrm{W}=$	175.0 ft	Floor Equip wt =	0.0 kips
$\mathrm{hn}=$	62.0 ft	Partition weight =	10.0 psf
k $=$	1.000	Ext Wall Weight =	50.0 psf

Bottom Floor (level 1) is a slab on grade

| Roof Snow Load | $=$ | 0.0 psf |
| ---: | :--- | ---: | :--- |
| Roof Equip wt | $=$ | 0.0 kips |
| Parapet weight | $=$ | 0.0 psf |
| Parapet height | $=$ | 0.0 ft |

Parapet height $=\quad 0.0 \mathrm{ft}$

Diaphragm shall be designed for level force Fx, but not less than $\mathrm{Fpx}=(\Sigma \mathrm{Fi} / \Sigma$ wi) wpx, but : Fpx min $=0.2 S_{\text {DS }}$ le $w p x=0.106 \mathrm{wpx}$
$F p x \max =0.4 \mathrm{~S}_{\text {DS }}$ le $w p x=0.211 \mathrm{wpx}$
Seismic Forces (Including all exterior walls)

Diaphragm Force Fpx
$\begin{array}{cccc}\text { EL above } & \text { Level } & & C v x=\end{array} \quad \begin{gathered}V=32.7 \mathrm{k} \\ \text { Seismic Base } \\ \end{gathered} \quad \begin{array}{ll}\text { Weight }\end{array} \quad W x x^{n} \quad \frac{W x h x^{k}}{\Sigma W i h^{k}} \quad \begin{gathered}\text { Base Shear Distribution }\end{gathered}$

	Diaphragm Force Fpx		
M		$\Sigma \mathrm{Wi}(\mathrm{k})$	Fpx
0	1,406	32.7	Design Fpx
0	0	0.0	0.0
490			
490	Base M		

Diaphragm Forces excluding parallel exterior walls

Diaphragm Force Fpx Parallel to Bldg Length V= 27k							Diaphragm Force Fpx Normal to Bldg Length V=30k					
Cvx =	Fx=CvxV	$\Sigma F x(k)$	$\Sigma \mathrm{Wi}(\mathrm{k})$	Fpx	Design Fpx	Level (x)	Cvx =	Fx=CvxV	$\Sigma F x(k)$	$\Sigma \mathrm{Wi}(\mathrm{k})$	Fpx	Design Fpx
1.000	27.44	27.4	1,181	27.4	124.7	Roof	1.000	29.6	29.6	1,275	29.6	134.6
0.000	0.00	0.0	0	0.0	0.0	1	0.000	0.0	0.0	0	0.0	0.0
1.000		27.4				Base	1.000		29.6			

JOB NO. SHEET NO.
CALCULATED BY
DATE

Seismic Loads - cont. :
Strength Level Forces
Seismic Design Category (SDC)= D

$$
\mathrm{le}=1.00
$$

CONNECTIONS

Force to connect smaller portions of structure to remainder of structure

$$
F p=0.133 S d s w_{p}=0.070 w_{p}
$$

$$
\text { or } \mathrm{Fp}=0.05 \mathrm{w}_{\mathrm{p}}=\quad 0.05 \mathrm{w}_{\mathrm{p}} \quad \text { Use } \mathrm{Fp}=0.07 \mathrm{w}_{\mathrm{p}} \quad \mathrm{w}_{\mathrm{p}}=\text { weight of smaller portion }
$$

Beam, girder or truss connection for resisting horizontal force parallel to member
$F_{P}=$ no less than 0.05 times dead plus live load vertical reaction

Anchorage of Structural Walls to elements providing lateral support

$\mathrm{Fp}=$ not less than 0.2 KaleW p
Flexible diaphragm span $\mathrm{Lf}=$
Enter Lf to calculate Fp for flexible diaphragm
$\mathrm{Fp}=0.4$ SdskaleWp $=0.211 \mathrm{Wp}$, but not less than 0.2 Wp (rigid diaphragm) $\mathrm{ka}=1 \quad \mathrm{Fp}=0.211 \mathrm{Wp}$ w/ anchor adjustment factor but Fp shall not be less than 5 psf

$\mathrm{h}=$	62.0	Flexible Diaphragm:	$\mathrm{Fp}=$	Wp
$\mathrm{z}=$	62.0	Rigid Diaphragm:	$\mathrm{Fp}=$	0.211 Wp

MEMBER DESIGN

Bearing Walls and Shear Walls (out of plane force)

$\mathrm{Fp}=0.4$ SdsleWw $=\quad 0.211 \mathrm{w}_{\mathrm{w}}$
but not less than $\quad 0.10 \mathrm{w}_{\mathrm{w}} \quad$ Use $F p=0.211 \mathrm{w}_{\mathrm{w}}$

Diaphragms

$$
F p=(\text { Sum Fi } / \text { Sum Wi)Wpx }+V p x=\quad \text { (Sum Fi } / \text { Sum Wi)Wpx }+V p x
$$

need not exceed 0.4 SdsleWpx + Vpx = 0.211 Wpx + Vpx
but not less than 0.2 SdsleWpx + Vpx = 0.106 Wpx + Vpx

ARCHITECTURAL COMPONENTS SEISMIC COEFFICIENTS

Architectural Component : Cantilever Elements (Unbraced or Braced to Structural Frame Below Its Center of Mass): Chimneys and stacks when laterally braced or supported by the structural frame
Importance Factor (lp) : 1.0

Component Amplification Factor (ap)
Comp Response Modification Factor (Rp) =2.5 Over-Strength Factor $(\Omega \mathrm{o})=2$
$\mathrm{Fp}=0.4 \mathrm{apSds} / \mathrm{pWp}(1+2 \mathrm{z} / \mathrm{h}) / \mathrm{Rp}=0.347 \mathrm{Wp}$
not greater than $\mathrm{Fp}=1.6 \mathrm{SdslpWp}=0.845 \mathrm{Wp}$
but not less than $\mathrm{Fp}=0.3 \mathrm{SdslpWp}=\quad 0.158 \mathrm{Wp}$
$h=\quad 62.0$ feet
$z=\quad 20.0$ feet $\quad z / h=0.32$
2.5

2

$$
\text { use } \mathrm{Fp}=\quad 0.347 \mathrm{Wp}
$$

MECH AND ELEC COMPONENTS SEISMIC COEFFICIENTS

Seismic Design Category D \& $\mathrm{Ip}=1.0$, therefore see ASCE7 Section 13.1.4 for exceptions

Mech or Electrical Component: Suspended vibration isolated equipment including in-line duct devices and suspended internally isolated components.
Importance Factor (lp) : 1.0
Component Amplification Factor $(\mathrm{ap})=2.5 \quad \mathrm{~h}=62.0$ feet
Comp Response Modification Factor $(R p)=2.5 \quad z=\quad 20.0$ feet $\quad z / h=0.32$ Over-Strength Factor $(\Omega \mathrm{o})=2$
$\mathrm{Fp}=0.4 \mathrm{apSdslpWp}(1+2 z / \mathrm{h}) / \mathrm{Rp}=0.347 \mathrm{Wp}$
not greater than $\mathrm{Fp}=1.6 \mathrm{SdslpWp}=0.845 \mathrm{Wp}$
but not less than $\mathrm{Fp}=0.3 \mathrm{SdsIpWp}=\quad 0.158 \mathrm{Wp}$

$$
\text { use } \mathrm{Fp}=\quad 0.347 \mathrm{Wp}
$$

Company

Address
City, State
Phone

JOB TITLE \qquad
JOB NO. \qquad SHEET NO.
CALCULATED BY \qquad DATE
CHECKED BY \qquad DATE \qquad

Rain Loads: ASCE 7-16

Rain Intensity $\mathrm{i}=$	$7.23 \mathrm{in} / \mathrm{hr}$
Static Head ds $=$	2.00 inches
Tributary Roof Area A $=$	2500 SF
Ponding Head dp $=$	2.00 inches
Flow Rate Q $=$	$188.0 \mathrm{gal} / \mathrm{min}$

Type of overflow device: Rectangular Closed Scupper 4" high \quad width $=\quad 16.0$ in

Hydraulic Head $d h=\quad 2.69$ inches

Design Rain Load $R=5.2(d s+d h+d p)=$

Company

Address
City, State
Phone

JOB TITLE \qquad

JOB NO. \qquad SHEET NO.
CALCULATED BY \qquad DATE \qquad CHECKED BY DATE \qquad

Tornado Loads : Change Code to ASCE 7-22 or 2024 IBC to design for tornados

Risk Category
$\begin{array}{ll}\text { Effective Plan Area } & (\mathrm{Ae}) \\ \text { Tornado Speed } & \left(\mathrm{V}_{\mathrm{T}}\right) \\ \text { Ground EL Factor } & (\mathrm{Ke})\end{array}$
50,000 SF

$$
120.0 \mathrm{mph}
$$

Ground EL Factor (Ke)
Exposure Coeff (KhTor)
Enclosure Classif.
Internal pressure Coefficient:

positive	0.55
negative	-0.18

Directionality Factor (KdT):
MWFRS $\quad 0.80$ use 1.00
C\&C Roof Zone 1' $\quad 1.00 \quad$ Essential Facility
C\&C for all others
Rooftop equipment
1.00
1.00

Other structures, use wind Kd
1.00
1.00

Enclosed Building
0.55
-0.18

$$
1.00
$$

$$
1+0
$$

Tornado Gust Effect Factor $\mathrm{G}_{\text {I }}$

h =	62.0 ft			
$B=$	175.0 ft			
/z (0.6h) $=$	37.2 ft			
$\overline{\mathrm{e}}=$	0.20			
$\ell=$	500 ft			
$L_{\text {min }}=$	15 tt			
$\mathrm{C}=$	0.20			
$\mathrm{g}_{\mathrm{Q}}, \mathrm{g}_{\mathrm{v}}=$	3.4			
$\mathrm{L}_{\mathrm{z}}=$	512.1 \%			
Q =	0.85			
$\mathrm{I}_{\mathrm{z}}=$	0.20			
$\mathrm{G}_{\mathrm{T}}=$	$0.85>0.85$ use Gt $=0.85$	$\mathrm{G}=$	0.85	Using default Gt

$$
\mathrm{q}_{\mathrm{hT}}=.00256 \mathrm{~K}_{\mathrm{hTor}} \mathrm{~K}_{\mathrm{e}} \mathrm{~V}_{\mathrm{T}^{\wedge} 2}=\quad 36.9 \mathrm{psf}
$$

Tornado Pressure Coefficient Adjustment Factor for Vertical Winds $\mathbf{K}_{v I}$

Buildings

Negative (uplift) pressures on Roofs
Main Wind Force Resisting System
1.10

Components and Cladding:
Roof Angle $(\theta)=1.2 \mathrm{deg}$
Roof Slope ≤ 7 degrees
Zone $1 \quad 1.20$
Zone $2 \quad 1.05$
Zone $3 \quad 1.05$
Positive (downward) pressures on Roofs 1.00
Wall Presures 1.00
All Other Cases 1.00

Other Structures

Negative (uplift) pressures on Rooftop Structures and Equipment and
Rooftop Solar Panels Parallel to the Roof Surface
Main Wind Force Resisting System 1.10
Components and Cladding: 1.00
All other cases
\qquad
\qquad SHEET NO.
Phone
CALCULATED BY DATE DATE \qquad

Change Code to ASCE 7-22 or 2024 IBC to design for tornados

$\mathrm{K}_{\mathrm{dT}}=$	1.00			Enclosed Building		
Tornado Base pressure (q_{hT}) $=$	36.9 psf	Bldg dim parallel to ridge =	300.0 ft	$\mathrm{GC}_{\text {piT }}=$	+ 0.55	-0.18
Roof Angle (θ) =	1.2 deg	Bldg dim normal to ridge $=$	175.0 ft	$\mathrm{G}_{\mathrm{T}}=$	0.85	
Roof tributary area:		$\mathrm{h}=$	62.0 ft		$\mathrm{qi}=\mathrm{qh} T$	
Wind normal to ridge $=(\mathrm{h} / 2)^{*} \mathrm{~L}$:	9300 sf	ridge ht =	63.8 ft			
Wind parallel to ridge $=(\mathrm{h} / 2)^{*} \mathrm{~L}$:	5425 sf	Roof Uplift KvT =	1.10			
		Walls \& Positive Roof KvT =	1.00			

Ultimate Tornado Surface Pressures (psf)

Surface	Wind Normal to Ridge				Wind Parallel to Ridge$L / B=1.71 \quad h / L=0.21$				
	Cp	+++	$\mathrm{w} /+\mathrm{q}_{\mathrm{i}} \mathrm{GC}_{\text {pit }}$	$\mathrm{w} /-\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\text {piT }}$	Dist. *	Cp	+++	$\mathrm{w} /+\mathrm{q}_{\mathrm{i}} \mathrm{GC}_{\text {piT }}$	$\mathrm{w} /-\mathrm{q}_{\mathrm{n}} \mathrm{GC}_{\text {pit }}$
Windward Wall (WW) @ h	0.80	25.1	4.8	31.7		0.80	25.1	4.8	31.7
Leeward Wall (LW) @ h	-0.50	-15.7	-35.9	-9.0		-0.36	-11.2	-31.5	-4.6
Side Wall (SW) @ h	-0.70	-21.9	-42.2	-15.3		-0.70	-21.9	-42.2	-15.3
Leeward Roof (LR)		**					uded in	indward roof	
Neg Windward Roof: 0 to $\mathrm{h} / 2^{*}$	-0.90	-31.0	-51.3	-24.4	0 to $\mathrm{h} / 2^{*}$	-0.90	-31.0	-51.3	-24.4
$\mathrm{h} / 2$ to h^{*}	-0.90	-31.0	-51.3	-24.4	$\mathrm{h} / 2$ to h^{*}	-0.90	-31.0	-51.3	-24.4
h to $2 h^{*}$	-0.50	-17.2	-37.5	-10.6	h to $2 h^{*}$	-0.50	-17.2	-37.5	-10.6
$>2 h^{*}$	-0.30	-10.3	-30.6	-17.0	$>2 h^{*}$	-0.30	-10.3	-30.6	-3.7
$\mathrm{Pos} / \mathrm{min}$ windward roof press.	-0.18	-6.2	-26.5	1.0	Min press.	-0.18	-6.2	-26.5	1.0

+++ is $\mathrm{q}_{\mathrm{hT}} \mathrm{K}_{\mathrm{dT}} \mathrm{K}_{\mathrm{vT}} \mathrm{GCp}$
For monoslope roofs, entire roof surface is either windward or leeward surface
*Horizontal distance from windward edge
**Roof angle < 10 degrees. Therefore, leeward roof is included in windward roof pressure zones.
Windward roof overhangs : 25.1 psf (upward : add to +++ windward roof pressure)

Parapet			
z	KzTor	qpT (psf)	
64.0 ft	1.000	36.9	
Windward parapet:		55.3 psf	$(\mathrm{GCpn}=+1.5)$
Leeward parapet:		-36.9 psf	$(\mathrm{GCpn}=-1.0)$

Wall Pressures at "z" (psf)				Leeward Wall						Combined WW + LW	
z	KzTor	q_{z}	qKKGC ${ }_{\text {p }}$	Windwa $\mathrm{w} /+\mathrm{q}_{\mathrm{i}} \mathrm{GC}_{\mathrm{p}}$	Wall $\mathrm{w} /-\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{pi}}$	Normal $\mathrm{w} /+\mathrm{q}_{\mathrm{i}} \mathrm{GC}_{\mathrm{pi}}$	Parallel $\mathrm{w} /+\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{pi}}$	Side $\mathrm{w} /+\mathrm{q}_{\mathrm{i}} \mathrm{GC}_{\mathrm{pi}}$	alls $\mathrm{w} /-\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{pi}}$	Wind Normal to Ridge	Wind Parallel to Ridge
0 to 200'	1.000	36.9	25.1	4.8	31.7	-35.9	-31.5	-42.2	-15.3	40.7	36.3

WIND NORMAL TO RIDGE

WIND PARALLEL TO RIDGE
\qquad
\qquad SHEET NO. CALCULATED BY \qquad DATE
\qquad CHECKED BY \qquad DATE \qquad

Change Code to ASCE 7-22 or 2024 IBC to design for tornados

User input	
50 sf	250 sf
-73.1	-64.0
-98.2	-87.0
-129.8	-115.5
16.0	16.0
-83.9	-71.1
-109.0	-94.1
-140.6	-122.6
-167.5	-138.4

Parapet

pT KdT= 36.9 psf

	Ultimate Surface Pressure (psf)					
Solid Parapet Pressure	10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
error	118.0	113.4	104.2	97.2	90.3	81.1
error	151.1	145.3	134.3	126.1	117.8	109.6
error						
error						
error	-66.4	-66.4	-61.1	-57.1	-53.2	-47.9
error	-99.5	-99.5	-88.0	-79.3	-70.5	-59.0

User input
200 sf
90.3
117.8
-53.2
-70.5

Walls	GCp				Ultimate Surface Pressure at h			
Area	20 sf	100 sf	200 sf	500 sf	20 sf	100 sf	200 sf	500 sf
Negative Zone 4	-0.90	-0.80	-0.76	-0.70	-53.5	-49.8	-48.2	-46.1
Negative Zone 5	-1.80	-1.40	-1.23	-1.00	-86.6	-71.9	-65.5	-57.1
Positive Zone 4 \& 5	0.90	0.75	0.69	0.60	39.8	34.3	31.9	28.8

User input	
100 sf	500 sf
-49.8	-46.1
-71.9	-57.1
34.3	28.8

NOTE: Negative zones 4 \& 5 pressures apply to all heights. Positive pressures vary with height, see below.

Wall surface pressure at ' z '					Positive zone 4 \& 5 (psf)			
z	KzTor	KdT KvT	qz (psf)	20	100	200	500	
0 to 200	1.00	1.00	36.9	39.8	34.3	31.9	28.8	

User input	
100 sf	500 sf
34.3	28.8

JOB TITLE \qquad
\qquad SHEET NO. \qquad

Roof Design Loads

0 to 200 sf: 20.0 psf
200 to 600 sf: $\quad 24-0.02$ Area, but not less than 12 psf over 600 sf : 12.0 psf

	300 sf	18.0 psf
	400 sf	16.0 psf
500 sf	14.0 psf	
User Input:	450 sf	15.0 psf

JOB TITLE \qquad

Floor Design Loads

Items	Description	Multiple	psf (max)	pst (min)
Flooring	Carpet \& pad		1.0	1.0
Topping	Concrete lightwt per 1"	$\times 4.5$	45.0	38.3
Decking	Metal Floor deck - 2", 20ga		2.0	1.5
Framing	Steel floor bms/joists \& girders		8.0	5.0
Topping	Deflection Concrete		12.5	2.0
Ceiling	Suspended acoustical tile		1.8	1.0
Sprinklers	Sprinklers		2.0	0.0
Mech \& Elec	Mech. \& Elec.		2.0	0.0
Misc.	Misc.		0.5	0.0
	Actual Dead Load Use this DL instead		74.8	O 48.8
			- 80.0	- 65.0
	Partitions		15.0	0.0
	Live Load Total Live Load		50.0	0.0
			65.0	0.0
	Total Load		145.0	48.8

FLOOR LIVE LOAD REDUCTION (not including partitions)

NOTE: Not allowed for assembly occupancy or LL>100psf or passenger car garages, except may reduce members supporting 2 or more floors \& non-assembly 20%.

$$
\text { Unreduced design live load: Lo }=\begin{array}{r}
L=L o\left(0.25+15 / \sqrt{K_{L L}} A_{T}\right) \\
50 \mathrm{psf}
\end{array}
$$

Floor member \& 1 floor cols $\mathrm{K}_{\mathrm{LL}}=\quad 2$
Tributary Area $A_{T}=\quad 300$ sf
Reduced live load: $L=\quad 43.1$ psf
Columns (2 or more floors) $\mathrm{K}_{\mathrm{LL}}=\quad 4$
$\begin{array}{rr}\text { Tributary Area } A_{T}= & 500 \mathrm{sf} \\ \text { Reduced live load: } L= & 29.3 \mathrm{psf}\end{array}$

IBC alternate procedure
Smallest of:
R=.08\%(SF - 150)
$R=23.1(1+D / L)=$
60.1\%
$R=40 \%$ member supports 1 floor
$R=60 \%$ member supports ≥ 2 floors

R	$=$	12.0%
Reduced live load: $L=$	44.0 psf	

$R=\quad 28.0 \%$
Reduced live load: $\mathrm{L}=\quad 36.0 \mathrm{psf}$

Wall Design Load \#1

Items	Description	Multiple	psf (max)	psf (min)
Sheathing	7/16" plywood/OSB		1.6	1.4
Sheathing	5/8" gypsum		2.8	2.5
Framing	6" metal studs @16"		2.5	0.9
veneer	4" Clay Brick		40.0	38.0
Wall Covering	1" Wood Paneling	$\times 0.38$	0.9	0.9
Insulation	R-11 Fiberglass insul.		0.4	0.4
Mech \& Elec	Mech. \& Elec.		1.0	0.0
Misc.	Misc.		0.5	0.0
		ead Load	$\bigcirc 49.7$	$\bigcirc 44.0$
		L instead	- 50.0	- 40.0

Wall Design Load \#2

Items	Description	Multiple	psf (max)	psf (min)
Sheathing	7/16" plywood/OSB		1.6	1.4
Sheathing	5/8" gypsum		2.8	2.5
Framing	CMU wall		47.0	45.0
veneer	7/8" Stucco		10.0	10.0
			0.0	0.0
Insulation	R-11 Fiberglass insul.		0.4	0.4
Mech \& Elec	Mech. \& Elec.		1.0	0.0
Misc.	Misc.		0.5	0.0
		ead Load	63.3	59.3
		L instead	-65.0	(-55.0

JOB NO. \qquad SHEET NO. CALCULATED BY \qquad DATE
CHECKED BY

CODE SUMMARY
Code: International Building Code 2021

Live Loads:

Dead Loads:

Floor	80.0 psf
Roof	20.0 psf

Roof Snow Loads:

Design Uniform Roof Snow load	$=$	20.5 psf
Flat Roof Snow Load	Pf $=$	20.5 psf
Risk Category	=	II
Balanced Snow Load	Ps $=$	20.5 psf
Ground Snow Load	$\mathrm{Pg}=$	30.0 psf
Importance Factor	1	1.00
Snow Exposure Factor	$\mathrm{Ce}=$	0.97
Thermal Factor	Ct $=$	1.00
Sloped-roof Factor	Cs =	1.00
Drift Surcharge load	$\mathrm{Pd}=$	
Width of Snow Drift	w	

Earthquake Design Data:

Wind Design Data:

Ultimate Design Wind Speed	120 mph
Nominal Design Wind Speed	92.95 mph
Risk Category	II
Mean Roof Ht (h)	62.0 ft
Exposure Category	C
Enclosure Classif.	Enclosed Building
Internal pressure Coef.	$+/-0.18$
Directionality (Kd)	0.85

job no. \qquad SHEET NO. CALCULATED BY \qquad SHEET NO.

CHECKED BY DATE DATE

Component and Cladding Ultimate Wind Pressures

Roof	Surface Pressure (psf)							
Area	10 sf	20 sf	50 sf	100 sf	200 sf	350 sf	500 sf	1000 sf
Negative Zone 1	-67.4	-63.0	-57.1	-52.6	-48.2	-44.6	-42.3	-42.3
Negative Zone 1'	-38.7	-38.7	-38.7	-38.7	-33.3	-29.0	-26.2	-20.8
Negative Zone 2	-88.9	-83.2	-75.7	-69.9	-64.2	-59.6	-56.7	-56.7
Negative Zone 3	-121.2	-109.8	-94.7	-83.2	-71.8	-62.5	-56.7	-56.7
Positive All Zones	17.2	16.1	16.0	16.0	16.0	16.0	16.0	16.0
Overhang Zone 1\&1'	-61.0	-59.9	-58.5	-57.4	-48.1	-40.6	-35.9	-35.9
Overhang Zone 2	-82.5	-74.9	-64.8	-57.2	-49.5	-43.4	-39.4	-39.4
Overhang Zone 3	-114.8	-101.4	-83.8	-70.4	-57.1	-46.3	-39.4	-39.4

Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 6.5 psf)

CASE A:	Parapet Area	Solid Parapet Pressure (psf)					
		10 sf	20 sf	50 sf	100 sf	200 sf	500 sf
	Zone 2 :	115.5	108.0	98.1	90.7	83.2	73.3
	Zone 3 :	148.0	134.8	117.3	104.0	90.8	73.3
CASE B: Interior zone : Corner zone :		-68.2	-64.8	-60.2	-56.8	-53.3	-48.7
		-78.0	-72.8	-65.9	-60.8	-55.6	-48.7

Wall	Surface Pressure (psf)				
Area	10 sf	100 sf	200 sf	500 sf	
Negative Zone 4	-42.0	-36.3	-34.5	-32.3	
Negative Zone 5	-51.6	-40.2	-36.8	-32.3	
Positive Zone 4 \& 5	38.7	33.0	31.3	29.0	

[^0]: Note: The hatched area indicates where roof positive pressures are equal to the adjacent wall positive pressure.

 Stepped roofs $\theta \leq 3^{\circ}$ $h \leq 60^{\prime} \&$ alt design $h<90^{\prime}$

