JOB NO.
CALCULATED BY CHECKED BY SHEET NO.
City, State Phone

DATE DATE

STRUCTURAL CALCULATIONS

FOR

Example 5.1 Wind on Sign

Guide to Wind Load Procedures ASCE 7-22

JOB NO. \qquad SHEET NO.
CALCULATED BY DATE CHECKED BY

Code Search

Code: ASCE 7-22
Occupancy:
Occupancy Group = U Utility \& Miscellaneous
Risk Category \& Importance Factors:

Risk Category $=$	I
Wind Factor $=$	1.00
Snow Factor	1.00
Seismic Importance factor $=$	1.00

Type of Construction:

Fire Rating:

Roof $=$	0.0 hr
Floor $=$	0.0 hr

Building Geometry:

Roof angle (θ)	$0.00 / 12$	0.0 deg
Building length	2.0 ft	
Least width	50.0 ft	
Mean Roof Ht (h)	20.0 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	
hb for Elevated bldg	0.0 ft	

Live Loads:

```
Roof \(\quad 0\) to 200 sf: 20 psf
        200 to 600 sf: \(24-0.02\) Area, but not less than 12 psf
        over 600 sf : 12 psf
```

 Floor:
 Typical Floor
 Partitions N/A

Company

Address
City, State
Phone

Example 3.3 \& 4.1 Example 5.1 Wind on Sign

JOB NO. \qquad SHEET NO.
CALCULATED BY DATE DATE

Wind Loads:

Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Bldg Directionality (Kd) Kh MWFRS<=60 Kh all other Type of roof

Topographic Factor (Kzt)

Topography		Flat
Hill Height	(H)	80.0 ft
Half Hill Length (Lh)		100.0 ft
Actual H/Lh	$=$	0.80
Use H/Lh	$=$	0.50
Modified Lh	$=$	160.0 ft
From top of crest:x	50.0 ft	
Bldg up/down wind?	downwind	

$$
\begin{array}{ll}
\mathrm{H} / \mathrm{Lh}=0.50 & \mathrm{~K}_{1}=0.000 \\
\mathrm{x} / \mathrm{Lh}=0.31 & \mathrm{~K}_{2}=0.792 \\
\mathrm{z} / \mathrm{Lh}=0.13 & \mathrm{~K}_{3}=1.000
\end{array}
$$

At Mean Roof Ht :

$$
K z t=\left(1+K_{1} K_{2} K_{3}\right)^{\wedge} 2=1.00
$$

ESCARPMENT

2D RIDGE or 3D AXISYMMETRICAL HILL

Gust Effect Factor

$\mathrm{h}=$	20.0 ft		use 20.0
B	$=$	50.0 ft	
$/ \mathrm{z}(0.6 \mathrm{~h})$	$=$	15.0 ft	

Rigid Structure		
$\overline{\mathrm{e}}$	$=$	0.20
ℓ	$=$	500 ft
$\mathrm{Z}_{\text {min }}$	$=$	15 ft
C	$=$	0.20
$\mathrm{~g}_{\mathrm{Q}}, \mathrm{g}_{\mathrm{v}}$	$=$	3.4
$\mathrm{~L}_{\mathrm{z}}$	$=$	581.1 ft
Q	$=$	0.926
I_{z}	$=$	0.176
G	$=$	0.89 use $\mathrm{G}=0.85$

$\mathbf{G}=1.354$ Using flexible structure formula
Flexible structure if natural frequency $<1 \mathrm{~Hz}$ ($T>1$ second). If building $h / B>4$ then may be flexible and should be investigated.
$h / B=0.40$

Flexible or Dynamically Sensitive Structure

Natural Frequency $\left(\eta_{1}\right)=0.7 \mathrm{~Hz}$
Damping ratio $(\beta)=\quad 0.01$
$/ b=0.660$
$/ \alpha=\quad 0.156$
$\mathrm{Vz}=\quad 112.1$
$\mathrm{N}_{1}=\quad 3.63$
$\mathrm{K}_{\mathrm{n}}=0.062$
$R_{h}=0.706 \quad \eta=0.574 \quad h=20.0 f t$
$R_{B}=0.468 \quad \eta=1.436$
$R_{L}=0.883 \quad \eta=0.192$
$g_{R}=4.104$
$R=1.392$
Gf $=1.354$

Ground Elevation Factor (Ke)

Grd level above sea level $=$	895 ft
Constant $=$	0.00256
$0.00256 \mathrm{Ke}=$	0.00247

$$
\begin{array}{rr}
\mathrm{Ke}= & 0.9681 \\
\text { use } \mathrm{Ke}= & 0.9640
\end{array}
$$

Enclosure Classification

Test for Enclosed Building:
Ao $<0.01 \mathrm{Ag}$ or 4 sf , whichever is smaller
Test for Open Building: All walls are at least 80% open.
Ao $\geq 0.8 \mathrm{Ag}$
Test for Partially Enclosed Building: Predominately open on one side only

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:
Ao ≥ 1.1 Aoi
Ao > smaller of 4 sf or 0.01 Ag
Aoi / Agi ≤ 0.20
Where:
Ao $=$ the total area of openings in a wall that receives positive external pressure.
$\mathrm{Ag}=$ the gross area of that wall in which Ao is identified.
Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.
$\mathrm{Agi}=$ the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.
Test for Partially Open Building: A building that does not qualify as open, enclosed or partially enclosed.
(This type building will have same wind pressures as an enclosed building.)

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall \& roof openings (Aog):		$-\quad \mathrm{SF}$
Unpartitioned internal volume (Vi):	$\mathrm{Ri}=$	$-\quad \mathrm{CF}$

\qquad SHEET NO. \qquad

Wind Factor =	1.00		
Gust Effect Factor (G) =	1.35	Ultimate Wind Speed =	103 mph
Kzt =	1.00	Exposure =	C

A. Solid Freestanding Walls \& Solid Signs (\& open signs with less than 30% open)

		$\mathrm{s} / \mathrm{h}=$	0.25	Case A \& B		
Dist to sign top (h)	80.0 ft	$\mathrm{B} / \mathrm{s}=$	2.50		$\mathrm{C}_{\mathrm{f}}=$	1.80
Height (s)	20.0 ft	Lr/s =	0.00	$F=K d$ qh	Cf As $=$	65.0 As
Width (B)	50.0 ft	Kz =	1.198		As $=$	50.0 sf
Wall Return (Lr) =	0.0 ft	$K d$ qh =	26.7 psf		F	3248 lbs
Directionality (Kd)	0.85					
Percent of open area to gross area	Open reduction			CaseC		
	0.0\%	factor $=$	1.00	Horiz dist from windward edge	$\underline{\text { Cf }}$	F=KdqhGCfAs (psf)
		uction fac		0 to s	2.43	87.5 As
		$/ \mathrm{h}>0.8=$	1.00	s to 2s	1.60	57.7 As
		factor 0 to $\mathrm{s}=$	1.00	2 s to 3s	1.15	41.5 As

B. Open Signs \& Single-Plane Open Frames (openings 30\% or more of gross area)

C. Chimneys, Tanks, \& Similar Structures Sign Posts

Height to centroid of Af (z)	30.0 ft	Kz =	0.980
Cross-Section	Round	Base pressure (Kd qz) =	25.7 psf
Directionality (Kd)	1.00		$\mathrm{h} / \mathrm{D}=45.11$
Height (h)	60.0 ft		$\mathrm{D}(\mathrm{qz})^{\wedge} .5=6.74$
Width (D)	1.3 ft		
Type of Surface	Moderately smooth		

Round $_{\mathrm{C}_{\mathrm{f}}}$		
$\mathrm{F}=\mathrm{Kdqz} \mathrm{GCf} \mathrm{Af}$	$=$	0.70
$\mathrm{~A}_{\mathrm{f}}$	$=$	24.3 Af
$\mathrm{F}=$	65 sf	

Q Trussed Towers

