City, State Phone

JOB NO. SHEET NO.
CALCULATED BY CHECKED BY DATE DATE

# STRUCTURAL CALCULATIONS 

FOR

## Example 3.4-160' Tall Office Building

## Code Search

Code: ASCE 7-22
Occupancy:
Occupancy Group =
B Business

## Risk Category \& Importance Factors:

| Risk Category $=$ | II |
| ---: | ---: |
| Wind Factor $=$ | 1.00 |
| Snow Factor | 1.00 |
| Seismic Importance factor $=$ | 1.00 |

## Type of Construction:

Fire Rating:

| Roof $=$ | 0.0 hr |
| ---: | :--- |
| Floor $=$ | 0.0 hr |

Building Geometry:

| Roof angle ( $\theta$ ) | $0.00 / 12$ | 0.0 deg |
| :--- | ---: | :--- |
| Building length | 200.0 ft |  |
| Least width | 100.0 ft |  |
| Mean Roof Ht (h) | 157.0 ft |  |
| Parapet ht above grd | 160.0 ft |  |
| Minimum parapet ht | 3.0 ft |  |
| hb for Elevated bldg | 0.0 ft |  |

## Live Loads:

Roof $\quad 0$ to 200 sf: 20 psf 200 to 600 sf: 24-0.02Area, but not less than 12 psf over 600 sf : 12 psf

Roofs used for roof gardens 100 psf
Floor:

| Typical Floor | 50 psf |
| :--- | ---: |
| Partitions | 15 psf |
| Corridors above first floor | 80 psf |
| Lobbies \& first floor corridors | 100 psf |
| Stairs and exit ways | 100 psf |

    DATE
    DATE
    ```

\section*{Wind Loads:}

Ultimate Wind Speed
Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Bldg Directionality (Kd) Kh MWFRS<=60 Kh all other Type of roof

ASCE 7-22
140 mph 108.4 mph II

Enclosed Building
\[
+/-0.18
\]
\[
0.85
\]
\[
1.072
\]
\[
1.072
\]

Monoslope

Topographic Factor (Kzt)
\begin{tabular}{lrr} 
Topography & & Flat \\
Hill Height & (H) & 80.0 ft \\
Half Hill Length (Lh) & 100.0 ft \\
Actual H/Lh & \(=\) & 0.80 \\
Use H/Lh & \(=\) & 0.50 \\
Modified Lh & \(=\) & 160.0 ft \\
From top of crest: x & \(=\) & 50.0 ft \\
Bldg up/down wind? & downwind
\end{tabular}
\[
\begin{array}{ll}
\mathrm{H} / \mathrm{Lh}=0.50 & \mathrm{~K}_{1}=0.000 \\
\mathrm{x} / \mathrm{Lh}=0.31 & \mathrm{~K}_{2}=0.792 \\
\mathrm{z} / \mathrm{Lh}=0.98 & \mathrm{~K}_{3}=1.000
\end{array}
\]

At Mean Roof Ht:
\[
\mathrm{Kzt}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{\wedge} 2=1.00
\]


ESCARPMENT


2D RIDGE or 3D AXISYMMETRICAL HILL

\section*{Gust Effect Factor}
\begin{tabular}{rlrl}
h & \(=\) & 157.0 ft \\
B & \(=\) & & 100.0 ft \\
\(/ \mathrm{z}(0.6 \mathrm{~h})\) & \(=\) & & 94.2 ft
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Rigid Structure} \\
\hline \(\overline{\mathrm{e}}=\) & 0.33 \\
\hline \(\ell=\) & 320 ft \\
\hline \(\mathrm{z}_{\text {min }}=\) & 30 ft \\
\hline \(\mathrm{C}=\) & 0.30 \\
\hline \(g_{Q}, g_{v}=\) & 3.4 \\
\hline \(\mathrm{L}_{\mathrm{z}}=\) & 453.9 ft \\
\hline Q = & 0.83 \\
\hline \(\mathrm{I}_{\mathrm{z}}=\) & 0.25 \\
\hline \(\mathrm{G}=\) & 0.83 \\
\hline
\end{tabular}

Flexible structure if natural frequency \(<1 \mathrm{~Hz}\) ( \(T>1\) second). If building \(h / B>4\) then may be flexible and should be investigated.
\(h / B=1.57\)
\(\mathbf{G}=\quad 0.83\) Using rigid structure formula
Flexible or Dynamically Sensitive Structure
Natural Frequency \(\left(\eta_{1}\right)=0.7 \mathrm{~Hz}\)
Damping ratio \((\beta)=\quad 0.01\)
\(/ b=0.470\)
\(/ \alpha=0.222\)
\(\mathrm{Vz}=\quad 121.8\)
\(\mathrm{N}_{1}=\quad 2.61\)
\(\mathrm{K}_{\mathrm{n}}=0.076\)
\(R_{h}=0.212 \quad \eta=4.149 \quad h=157.0 \mathrm{ft}\)
\(R_{B}=0.307 \quad \eta=2.643\)
\(R_{L}=0.055 \quad \eta=17.695\)
\(g_{R}=4.104\)
\(R=0.525\)
\(\mathrm{Gf}=0.951\)

\section*{Ground Elevation Factor (Ke)}
\begin{tabular}{rrr} 
Grd level above sea level \(=\) & 0 ft & \(\mathrm{Ke}=1.0000\) \\
Constant \(=\) & 0.00256 &
\end{tabular}

\section*{Enclosure Classification}

Test for Enclosed Building:
Ao \(<0.01 \mathrm{Ag}\) or 4 sf , whichever is smaller
Test for Open Building: All walls are at least \(80 \%\) open.
Ao \(\geq 0.8 \mathrm{Ag}\)
Test for Partially Enclosed Building: Predominately open on one side only
\begin{tabular}{|c|c|c|c|c|}
\hline & Input & & Test & \\
\hline Ao & 500.0 s & Ao \(\geq 1.1\) Aoi & NO & \\
\hline Ag & 600.0 s & Ao > 4 sf or 0.01 Ag & YES & \\
\hline Aoi & 1000.0 s & Aoi / Agi \(\leq 0.20\) & YES & Building is NOT \\
\hline Agi & 10000.0 s & & & Partially Enclosed \\
\hline
\end{tabular}

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:
Ao \(\geq 1.1\) Aoi
Ao > smaller of 4 sf or 0.01 Ag
Aoi / Agi \(\leq 0.20\)
Where:
Ao = the total area of openings in a wall that receives positive external pressure.
\(\mathrm{Ag}=\) the gross area of that wall in which Ao is identified.
Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.
Agi \(=\) the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.
Test for Partially Open Building: A building that does not qualify as open, enclosed or partially enclosed.
(This type building will have same wind pressures as an enclosed building.)

\section*{Reduction Factor for large volume partially enclosed buildings (Ri):}

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.
\begin{tabular}{llll} 
Total area of all wall \& roof openings (Aog): & & - & SF \\
Unpartitioned internal volume (Vi): & \(\mathrm{Ri}=\) & -CF
\end{tabular}
\(\square\)
\begin{tabular}{rr} 
JOB NO. & SHEET NO. \\
CALCULATED BY \\
CHECKED BY & DATE \\
\hline
\end{tabular}

Wind Loads - MWFRS all h (Except for Open Buildings)


Windward roof overhangs : 30.5 psf (upward : add to qhGCp windward roof pressure)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|l|}{ Parapet } \\
\hline z & Kz & Kzt & Kdqp (psf) \\
\hline 160.0 ft & 1.077 & 1.00 & 45.9 \\
Wındward parapet: & 68.9 pst & \((\mathrm{GCpn}=+1.5)\) \\
Leeward parapet: & -45.9 psf & \((\mathrm{GCpn}=-1.0)\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Windward Wall Pressures at "z" (psf)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\begin{tabular}{c} 
Combined WW + LW \\
Wind Normal \\
to Ridge
\end{tabular} & \begin{tabular}{c} 
Wind Parallel \\
to Ridge
\end{tabular} \\
\hline
\end{tabular}}} \\
\hline & z & Kz & Kzt & \(\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{p}}\) & indward W
\[
\mathrm{w} /+\mathrm{q}_{\mathrm{i}} \mathrm{GC}_{\mathrm{pi}}
\] & \(\mathrm{w} /-\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{pi}}\) & & \\
\hline & 0 to 15' & 0.57 & 1.00 & 16.3 & 8.1 & 24.5 & 35.3 & 27.7 \\
\hline & 20.0 ft & 0.62 & 1.00 & 17.6 & 9.4 & 25.8 & 36.6 & 29.0 \\
\hline & 25.0 ft & 0.66 & 1.00 & 18.7 & 10.4 & 26.9 & 37.7 & 30.1 \\
\hline & 30.0 ft & 0.69 & 1.00 & 19.6 & 11.4 & 27.8 & 38.6 & 31.0 \\
\hline & 40.0 ft & 0.74 & 1.00 & 21.2 & 12.9 & 29.4 & 40.2 & 32.6 \\
\hline & 50.0 ft & 0.79 & 1.00 & 22.5 & 14.2 & 30.7 & 41.5 & 33.9 \\
\hline & 60.0 ft & 0.83 & 1.00 & 23.6 & 15.4 & 31.8 & 42.6 & 35.0 \\
\hline & 70.0 ft & 0.86 & 1.00 & 24.6 & 16.3 & 32.8 & 43.6 & 36.0 \\
\hline & 80.0 ft & 0.90 & 1.00 & 25.5 & 17.2 & 33.7 & 44.5 & 36.9 \\
\hline & 90.0 ft & 0.92 & 1.00 & 26.3 & 18.0 & 34.5 & 45.3 & 37.7 \\
\hline & 100.0 ft & 0.95 & 1.00 & 27.0 & 18.8 & 35.2 & 46.1 & 38.5 \\
\hline & 120.0 ft & 1.00 & 1.00 & 28.4 & 20.1 & 36.6 & 47.4 & 39.8 \\
\hline & 140.0 ft & 1.04 & 1.00 & 29.6 & 21.3 & 37.8 & 48.6 & 41.0 \\
\hline \(h=\) & 157.0 ft & 1.07 & 1.00 & 30.5 & 22.3 & 38.7 & 49.5 & 41.9 \\
\hline
\end{tabular}


WIND NORMAL TO RIDGE


WIND PARALLEL TO RIDGE


NOTE: ASCE 7 requires the application of full and partial loading of the wind pressures per the 4 cases below.


CASE 4

\section*{Wind Forces at Floors}
\begin{tabular}{lc} 
Total Floors above grade \(=\) & 11 \\
\(\mathrm{~T} / \mathrm{Fdn}(\) dist below grade \()=\) & 2.0 ft
\end{tabular}

Building dimension (parallel with ridge) \(=200.0 \mathrm{ft} \quad \mathrm{e}=30.00 \mathrm{ft}\) Building dimension \((\) normal to ridge \()=100.0 \mathrm{ft} \quad \mathrm{e}=15.00 \mathrm{ft}\)
L is the building dimension parallel to the wind direction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Level} & \multirow[t]{2}{*}{\begin{tabular}{l}
Elevation \\
Above \\
Grade (ft)
\end{tabular}} & \multirow[t]{2}{*}{Height of Centroid to Fdn (ft)} & \multicolumn{6}{|c|}{Wind Normal to Ridge} & \multicolumn{5}{|c|}{Wind Parallel to Ridge} \\
\hline & & & L & B & Area (sf) & \begin{tabular}{l}
Applied \\
Force (k)
\end{tabular} & \begin{tabular}{l}
Story \\
Shear (k)
\end{tabular} & Overturning Moment ('k) & Area & \begin{tabular}{l}
Applied \\
Force (k)
\end{tabular} & Story
Shear (k) & Overturning Moment ('k) & \\
\hline Equip,etc & 158.00 & 160.00 & win & up, scr & valls, etc \(=\) & 2 & & & & 0 & & & \\
\hline Parapet & 160.00 & 160.50 & 100.0 & 200.0 & 600.0 & 68.9 & & & 300.0 & 34.5 & & & \\
\hline T/Ridge & 157.00 & 159.00 & 100.0 & 200.0 & 0.0 & 0.0 & & & 0.0 & 0.0 & & & \\
\hline Roof & 157.00 & 159.00 & 100.0 & 200.0 & 1,400.0 & 69.3 & 140.2 & 105.4 & 700.0 & 29.3 & 63.8 & 51.7 & Roof \\
\hline 11 & 143.00 & 145.00 & 100.0 & 200.0 & 2,800.0 & 136.6 & 276.8 & 2,068.6 & 1,400.0 & 57.6 & 121.4 & 944.7 & 11 \\
\hline 10 & 129.00 & 131.00 & 100.0 & 200.0 & 2,800.0 & 134.3 & 411.1 & 5,943.9 & 1,400.0 & 56.5 & 177.9 & 2,644.3 & 10 \\
\hline 9 & 115.00 & 117.00 & 100.0 & 200.0 & 2,800.0 & 131.9 & 543.0 & 11,699.6 & 1,400.0 & 55.3 & 233.2 & 5,134.8 & 9 \\
\hline 8 & 101.00 & 103.00 & 100.0 & 200.0 & 2,800.0 & 129.2 & 672.2 & 19,301.5 & 1,400.0 & 53.9 & 287.1 & 8,399.1 & 8 \\
\hline 7 & 87.00 & 89.00 & 100.0 & 200.0 & 2,800.0 & 126.2 & 798.4 & 28,712.2 & 1,400.0 & 52.5 & 339.5 & 12,418.4 & 7 \\
\hline 6 & 73.00 & 75.00 & 100.0 & 200.0 & 2,800.0 & 122.9 & 921.3 & 39,890.3 & 1,400.0 & 50.8 & 390.3 & 17,172.1 & 6 \\
\hline 5 & 59.00 & 61.00 & 100.0 & 200.0 & 2,800.0 & 119.1 & 1,040.4 & 52,789.0 & 1,400.0 & 48.9 & 439.2 & 22,636.8 & 5 \\
\hline 4 & 45.00 & 47.00 & 100.0 & 200.0 & 2,800.0 & 114.5 & 1,154.9 & 67,354.7 & 1,400.0 & 46.6 & 485.8 & 28,785.6 & 4 \\
\hline 3 & 31.00 & 33.00 & 100.0 & 200.0 & 2,800.0 & 108.7 & 1,263.6 & 83,523.2 & 1,400.0 & 43.7 & 529.5 & 35,586.5 & 3 \\
\hline 2 & 17.00 & 19.00 & 100.0 & 200.0 & 3,100.0 & 111.3 & 1,374.9 & 101,213.6 & 1,550.0 & 43.8 & 573.3 & 42,998.9 & 2 \\
\hline 1 & 0.00 & 2.00 & 100.0 & 200.0 & 1,700.0 & 60.1 & 1,435.0 & 124,586.3 & 850.0 & 23.6 & 596.9 & 52,744.9 & 1 \\
\hline GRD & & 2.00 & & & & & & 124,586.3 & & & & 52,744.9 & GRD \\
\hline FDN & & 0.00 & & & & & & 127,456.2 & & & & 53,938.6 & FDN \\
\hline
\end{tabular}
\(\qquad\) SHEET NO.
Phone

\(\qquad\) DATE \(\qquad\) CHECKED BY \(\qquad\) DATE \(\qquad\)
Ultimate Wind Pressures
Wind Loads - Components \& Cladding : \(\mathrm{h}>\mathbf{6 0}^{\prime}\)
\begin{tabular}{rrrr} 
Base pressure \((\mathrm{qh})=\) & 53.8 psf & \(\mathrm{Kh}=\) & 1.072 \\
\((\mathrm{Kd}\) qh \()=\) & \(\mathbf{4 5 . 7 \mathrm { psf }}\) & \(\mathrm{h}=\) & 157.0 ft \\
Minimum parapet ht \(=\) & 3.0 ft & \(\mathrm{a}=\) & 10.0 ft \\
Roof Angle \((\theta)=\) & 0.0 deg & \(\mathrm{GCpi}=\) & \(+/-0.18\) \\
Type of roof \(=\) & Monoslope & Kd qi \(=\mathrm{Kd}\) qh \(=\) & 45.7 psf
\end{tabular}
100.0 ft
100.0. \(\#\)
100.0 ft

Type of roof \(=\) Monoslope \(\quad \mathrm{Kdqi}=\mathrm{Kd} \mathrm{qh}=45.7 \mathrm{psf}\)

\(\qquad\) SHEET NO.
Phone

\(\qquad\) DATE CHECKED BY DATE

\section*{Location of C\&C Wind Pressure Zones - ASCE 7-22}


Roofs w/ \(\theta \leq 10^{\circ}\) and all walls \(h>60^{\prime}\)


Multispan Gable \& Sawtooth \(\leq 10^{\circ}\)
\(\&\) Gable \(\theta \leq 7\) degrees \&
Multispan Gable \& Sawtooth \(\leq 10^{\circ}\)
\(\&\) Gable \(\theta \leq 7\) degrees \& Monoslope \(\leq 3\) degrees \(h \leq 60^{\prime}\) \& alt design \(h<90^{\prime}\)
WALL


Monoslope roofs
\(3^{\circ}<\theta \leq 10^{\circ}\)
\(h \leq 60^{\prime}\) \& alt design \(h<90^{\prime}\)


Monoslope roofs \(10^{\circ}<\theta \leq 30^{\circ}\)
\(h \leq 60^{\prime}\) \& alt design \(h<90^{\prime}\)


Gable \(27^{\circ}<\theta \leq 45^{\circ}\)


Hip \(7^{\circ}<\theta \leq 45^{\circ}\)


Multispan gable \(10^{\circ}<\theta \leq 45^{\circ}\)
\(h \leq 60^{\prime} \&\) alt design \(h<90^{\prime}\)



Sawtooth \(10^{\circ}<\theta \leq 45^{\circ}\) \(h \leq 60^{\prime}\) \& alt design \(h<90^{\prime}\)


Stepped roofs \(\theta \leq 3^{\circ}\)
\(h \leq 60^{\prime}\) \& alt design \(h<90^{\prime}\)

Note: The hatched area indicates where roof positive pressures are equal to the adjacent wall positive pressure.
\(\qquad\) SHEET NO. \(\qquad\)

\section*{Roof Design Loads}


0 to 200 sf: 20.0 psf
200 to 600 sf: \(\quad 24-0.02\) Area, but not less than 12 psf over 600 sf: 12.0 psf
\begin{tabular}{lll} 
& 300 sf & 18.0 psf \\
& 400 sf & 16.0 psf \\
500 sf & 14.0 psf \\
User Input: & 450 sf & 15.0 psf
\end{tabular}

JOB NO. \(\square\) SHEET NO.
\begin{tabular}{rr} 
JOB NO. & SHEET NO. \\
CALCULATED BY \\
CHECKED BY \\
\hline
\end{tabular}

Floor Design Loads
\begin{tabular}{|c|c|c|c|c|}
\hline Items & Description & Multiple & psf (max) & psf (min) \\
\hline Flooring & Carpet \& pad & & 1.0 & 1.0 \\
\hline Topping & Concrete regular per 1" & \(\times 4.3\) & 53.8 & 51.6 \\
\hline Decking & Metal Floor deck - 2", 20ga & & 2.0 & 1.5 \\
\hline Framing & Steel floor bms/joists \& girders & & 8.0 & 5.0 \\
\hline Topping & Deflection Concrete & \(\times 0.8\) & 10.0 & 1.6 \\
\hline Ceiling & Suspended acoustical tile & & 1.8 & 1.0 \\
\hline Sprinklers & Sprinklers & & 2.0 & 0.0 \\
\hline Mech \& Elec & Mech. \& Elec. & & 2.0 & 0.0 \\
\hline Misc. & Misc. & & 0.5 & 0.0 \\
\hline \multirow[t]{6}{*}{} & \multicolumn{2}{|r|}{Actual Dead Load} & P 81.1 & - 61.7 \\
\hline & \multicolumn{2}{|r|}{Use this DL instead} & Q 85.0 & O 65.0 \\
\hline & \multicolumn{2}{|r|}{Partitions} & 15.0 & 0.0 \\
\hline & \multicolumn{2}{|r|}{Live Load} & 50.0 & 0.0 \\
\hline & \multicolumn{2}{|r|}{Total Live Load} & 65.0 & 0.0 \\
\hline & \multicolumn{2}{|r|}{Total Load} & 150.0 & 61.7 \\
\hline
\end{tabular}

\section*{FLOOR LIVE LOAD REDUCTION (not including partitions)}

NOTE: Not allowed for assembly occupancy or LL>100psf or passenger car garages, except may reduce members supporting 2 or more floors \& non-assembly \(20 \%\).
Unreduced design live load: Lo \(=\)\begin{tabular}{r}
\(\mathrm{L}=\mathrm{Lo}\left(0.25+15 / \sqrt{\mathrm{K}_{\mathrm{LL}}} \mathrm{A}_{\mathrm{T}}\right)\) \\
50 psf
\end{tabular}

Floor member \& 1 floor cols \(\mathrm{K}_{\mathrm{LL}}=\quad 2\)
Tributary Area \(A_{T}=\quad 300\) sf
Reduced live load: \(L=\quad 43.1 \mathrm{psf}\)
IBC alternate procedure
Smallest of:
\(R=.08 \%(S F-150)\)
\(R=23.1(1+D / L)=62.4 \%\)
\(R=40 \%\) beams; \(60 \%\) columns
\begin{tabular}{rrr}
\(R\) & \(=\) & \(12.0 \%\) \\
Reduced live load: \(L=\) & 44.0 psf
\end{tabular}

Columns (2 or more floors) \(\mathrm{K}_{\mathrm{LL}}=\quad 4\)
\(\begin{array}{rr}\text { Tributary Area } A_{T}= & 500 \mathrm{sf} \\ \text { Reduced live load: } L= & 29.3 \mathrm{psf}\end{array}\)
\(R=\quad 28.0 \%\)
Reduced live load: \(\mathrm{L}=\quad 36.0 \mathrm{psf}\)

JOB NO. \(\qquad\) SHEET NO

\section*{Wall Design Load \#1}
\begin{tabular}{|l|lc|c|c|}
\hline Items & Description & Multiple & psf (max) & psf (min) \\
\hline \hline Sheathing & 7/16" plywood/OSB & & 1.6 & 1.4 \\
Sheathing & 5/8" gypsum & & 2.8 & 2.5 \\
Framing & 6" metal studs @16" & & 2.5 & 0.9 \\
veneer & 4" Clay Brick & & 40.0 & 38.0 \\
Wall Covering & 1" Wood Paneling & x 0.38 & 0.9 & 0.9 \\
Insulation & R-11 Fiberglass insul. & & 0.4 & 0.4 \\
Mech \& Elec & Mech. \& Elec. & & 1.0 & 0.0 \\
Misc. & Misc. & 0.5 & 0.0 \\
& & & & \\
& & Actual Dead Load & Ose this DL instead & 59.7 \\
\hline
\end{tabular}

\section*{Wall Design Load \#2}
\begin{tabular}{|c|c|c|c|c|}
\hline Items & Description & Multiple & psf (max) & psf (min) \\
\hline Sheathing & 7/16" plywood/OSB & & 1.6 & 1.4 \\
\hline Sheathing & 5/8" gypsum & & 2.8 & 2.5 \\
\hline Framing & CMU wall & & 47.0 & 45.0 \\
\hline veneer & 7/8" Stucco & & 10.0 & 10.0 \\
\hline & & & 0.0 & 0.0 \\
\hline Insulation & R-11 Fiberglass insul. & & 0.4 & 0.4 \\
\hline Mech \& Elec & Mech. \& Elec. & & 1.0 & 0.0 \\
\hline Misc. & Misc. & & 0.5 & 0.0 \\
\hline & & ead Load & 63.3 & 59.3 \\
\hline & & L instead & -65.0 & (-55.0 \\
\hline
\end{tabular}
\(\qquad\) SHEET NO. DATE

\section*{CODE SUMMARY}

\section*{Code:}

Live Loads:


\section*{Dead Loads:}
\begin{tabular}{ll} 
Floor & 85.0 psf \\
Roof & 20.0 psf
\end{tabular}

Roof Snow Loads:
\begin{tabular}{|c|c|c|}
\hline Design Uniform Roof Snow load & = & 12.1 psf \\
\hline Flat Roof Snow Load & Pf \(=\) & 4.1 psf \\
\hline Risk Category & = & II \\
\hline Balanced Snow Load & Ps \(=\) & 4.1 psf \\
\hline Ground Snow Load & \(\mathrm{Pg}=\) & 5.0 psf \\
\hline Importance Factor & 1 & 1.00 \\
\hline Snow Exposure Factor & Ce & 0.97 \\
\hline Thermal Factor & Ct = & 1.20 \\
\hline Sloped-roof Factor & Cs = & 1.00 \\
\hline Drift Surcharge load & \(\mathrm{Pd}=\) & \\
\hline Width of Snow Drift & W = & \\
\hline Winter wind Parameter & \(\mathrm{W} 2=\) & 0.55 \\
\hline
\end{tabular}

\section*{Earthquake Design Data:}
\begin{tabular}{|c|c|c|}
\hline Risk Category & \(=\) & 11 \\
\hline Importance Factor & 1 = & 1.00 \\
\hline Mapped spectral response accelerat & Ss = & 0.60 g \\
\hline & S1 = & 0.10 g \\
\hline Site Class & = & C \\
\hline Spectral Response Coef. & Sds = & 0.007 \\
\hline & Sd1 = & 0.007 \\
\hline Seismic Design Category & \(=\) & A \\
\hline
\end{tabular}

Seismic Design Category
Basic Structural System
Seismic Resisting System
Structural steel systems not specifically detailed for seismic resistance

Design Base Shear Structural steel systems not specifically detailed for seismic resistance

Seismic Response Coef.
Response Modification Factor
Analysis Procedure
\(V=0.010 \mathrm{~W}\)
\(\mathrm{Cs}=0.010\)
\(\mathrm{R}=\)
3
Equivalent Lateral-Force Analysis
Rain Design Data:
\begin{tabular}{lrr} 
Rain intensity & \(i=\) & \(7.23 \mathrm{in} / \mathrm{hr}\) \\
Rain Load & \(\mathrm{R}=\) & 34.8 psf
\end{tabular}

\section*{Wind Design Data:}
\begin{tabular}{lr} 
Ultimate Design Wind Speed & 140 mph \\
Nominal Design Wind Speed & 108.44 mph \\
Risk Category & II \\
Mean Roof Ht (h) & 157.0 ft \\
Exposure Category & B \\
Enclosure Classif. & Enclosed Building \\
Internal pressure Coef. & \(+/-0.18\) \\
Directionality (Kd) & 0.85
\end{tabular}
Directionality (Kd)
\(\square\) SHEET NO. \(\qquad\) dATE
CHECKED BY DATE \(\qquad\)

\section*{Component and Cladding Ultimate Wind Pressures}


Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 8.2 psf )
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } & \multicolumn{7}{|c|}{ Solid Parapet Pressure (psf) } \\
\cline { 2 - 7 } & \multicolumn{6}{|c|}{ Area } \\
\cline { 2 - 7 } & 10 sf & 20 sf & 50 sf & 100 sf & 200 sf & 500 sf \\
\hline CASE A : Edge zones: & 147.0 & 141.3 & 129.8 & 121.2 & 112.5 & 101.1 \\
Corner zones: & 147.0 & 141.3 & 129.8 & 121.2 & 112.5 & 101.1 \\
& & & & & & \\
\hline & & & & & & \\
\hline CASE B : Edge zones: & -82.7 & -82.7 & -76.1 & -71.2 & -66.2 & -59.7 \\
Corner zones: & -124.0 & -124.0 & -109.6 & -98.8 & -87.9 & -73.5 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|rrr|}
\cline { 2 - 5 } Wall & \multicolumn{4}{c|}{ Surface Pressure (psf) } \\
\cline { 2 - 5 } Area & 20 sf & 100 sf & 200 sf & 500 sf \\
\hline Negative Zone 4 & -49.4 & -44.8 & -42.8 & -40.2 \\
Negative Zone 5 & -90.5 & -72.2 & -64.3 & -53.9 \\
Positive Zone 4 \& 5 & & & & \\
\hline 0 to 15' & 30.2 & 26.6 & 25.0 & 22.9 \\
20 ft & 32.0 & 28.0 & 26.3 & 24.1 \\
25 ft & 33.4 & 29.2 & 27.4 & 25.0 \\
30 ft & 34.7 & 30.3 & 28.4 & 25.9 \\
40 ft & 36.8 & 32.0 & 30.0 & 27.3 \\
50 ft & 38.5 & 33.5 & 31.3 & 28.4 \\
60 ft & 40.1 & 34.7 & 32.5 & 29.4 \\
70 ft & 41.4 & 35.9 & 33.5 & 30.3 \\
80 ft & 42.6 & 36.9 & 34.4 & 31.1 \\
90 ft & 43.7 & 37.8 & 35.2 & 31.9 \\
100 ft & 44.7 & 38.6 & 36.0 & 32.5 \\
120 ft & 46.5 & 40.1 & 37.4 & 33.8 \\
140 ft & 48.1 & 41.5 & 38.6 & 34.8 \\
\(\mathrm{~h}=157 \mathrm{ft}\) & 49.4 & 42.5 & 39.6 & 35.6
\end{tabular}```

