JOB NO.
CALCULATED BY SHEET NO. Phone

DATE DATE

STRUCTURAL CALCULATIONS

FOR

20' Eave Height using MWFRS all heights procedure 20' Eave Height using MWFRS <60' procedure

JOB NO. \qquad CALCULATED BY _ DATE CHECKED BY

Code Search

Code: ASCE 7-22
Occupancy:
Occupancy Group $=\quad$ B \quad Business

Risk Category \& Importance Factors:

Risk Category $=$	II
Wind Factor $=$	1.00
Snow Factor	1.00
Seismic Importance factor $=$	1.00

Type of Construction:

Fire Rating:

Roof $=$	0.0 hr
Floor $=$	0.0 hr

Building Geometry:

Roof angle (θ)	$4.00 / 12$	18.4 deg
Building length	250.0 ft	
Least width	200.0 ft	
Mean Roof Ht (h)	36.7 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	
hb for Elevated bldg	0.0 ft	

Live Loads:

Roof $\quad 0$ to $200 \mathrm{sf}: 20 \mathrm{psf}$ 200 to 600 sf: $24-0.02$ Area, but not less than 12 psf over 600 sf : 12 psf

Floor:

Typical Floor	100 psf
Partitions	N / A

Company

Example 3.3 \& 4.1 Example 3.3 \& 4.1
Address
City, State
Phone
CALCULATED BY
\qquad
SHEET NO.
DATE
DATE

Wind Loads:

Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Bldg Directionality (Kd) Kh MWFRS<=60
Kh all other
Type of roof

Topographic Factor (Kzt)

Topography		Flat
Hill Height	(H)	80.0 ft
Half Hill Length (Lh)	$=$	100.0 ft
Actual H/Lh	$=$	0.80
Use H/Lh	$=$	160.50
Modified Lh	$=$	50.0 ft
From top of crest: $\mathrm{x}=$		
Bldg up/down wind?	downwind	

$$
\begin{array}{ll}
\mathrm{H} / \mathrm{Lh}=0.50 & \mathrm{~K}_{1}=0.000 \\
\mathrm{x} / \mathrm{Lh}=0.31 & \mathrm{~K}_{2}=0.792 \\
\mathrm{z} / \mathrm{Lh}=0.23 & \mathrm{~K}_{3}=1.000
\end{array}
$$

At Mean Roof Ht:

$$
\mathrm{Kzt}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{\wedge} 2=1.00
$$

ESCARPMENT

2D RIDGE or 3D AXISYMMETRICAL HILL

Gust Effect Factor

h	$=$	36.7 ft	
B	$=$		200.0 ft
$/ \mathrm{z}(0.6 \mathrm{~h})$	$=$		22.0 ft

	Rigid Structure	
\bar{e}	0.20	
ℓ	$=$	500 ft
$\mathrm{Z}_{\text {min }}$	$=$	15 ft
C	$=$	0.20
$\mathrm{~g}_{\mathrm{Q}}, \mathrm{g}_{\mathrm{v}}$	$=$	3.4
$\mathrm{~L}_{\mathrm{z}}$	$=$	461.1 ft
Q	$=$	0.84
I_{z}	$=$	0.21
G	$=$	$\mathbf{0 . 8 4}$

Flexible structure if natural frequency $<1 \mathrm{~Hz}$ ($T>1$ second). If building $h / B>4$ then may be flexible and should be investigated. $h / B=0.18 \quad$ Rigid structure (low rise bldg)
$\mathbf{G}=\quad 0.85$ Using rigid structure default
Flexible or Dynamically Sensitive Structure
Natural Frequency $\left(\eta_{1}\right)=0.7 \mathrm{~Hz}$
Damping ratio $(\beta)=\quad 0.01$
$/ b=0.660$
$/ \alpha=0.156$
$\mathrm{Vz}=\quad 104.5$
$\mathrm{N}_{1}=\quad 3.09$
$\mathrm{K}_{\mathrm{n}}=0.069$
$R_{h}=0.534 \quad \eta=1.131 \quad h=36.7 \mathrm{ft}$
$R_{B}=0.149 \quad \eta=6.163$
$R_{L}=0.038 \quad \eta=25.789$
$g_{R}=4.104$
$R=0.547$
Gf $=0.960$

Ground Elevation Factor (Ke)

Grd level above sea level $=$	0 ft	$\mathrm{Ke}=1.0000$
Constant $=$	0.00256	

Enclosure Classification

Test for Enclosed Building:
Ao $<0.01 \mathrm{Ag}$ or 4 sf , whichever is smaller
Test for Open Building: All walls are at least 80% open.
Ao $\geq 0.8 \mathrm{Ag}$
Test for Partially Enclosed Building: Predominately open on one side only

Input			Ao ≥ 1.1 Aoi	Test	
Ao	500.0	sf		NO	
Ag	600.0	sf	Ao > 4sf or 0.01 Ag	YES	
Aoi	1000.0	sf	Aoi / Agi ≤ 0.20	YES	Building is NOT
Agi	10000.0	sf			Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:
Ao ≥ 1.1 Aoi
Ao > smaller of 4 sf or 0.01 Ag
Aoi / Agi ≤ 0.20
Where:
Ao = the total area of openings in a wall that receives positive external pressure.
$\mathrm{Ag}=$ the gross area of that wall in which Ao is identified.
Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.
Agi $=$ the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.
Test for Partially Open Building: A building that does not qualify as open, enclosed or partially enclosed.
(This type building will have same wind pressures as an enclosed building.)

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall \& roof openings (Aog):		$-\quad \mathrm{SF}$
Unpartitioned internal volume (Vi):	$\mathrm{Ri}=$	-CF

\square SHEET NO.

Wind Loads - MWFRS all h (Except for Open Buildings)

Windward roof overhangs : 20.0 psf (upward : add to qhGCp windward roof pressure)

Parapet			
z	Kz	Kzt	Kdqp (psf)
0.0 ft	0.851	1.00	0.0
Wındward parapet:	0.0 pst	$(\mathrm{GCpn}=+1.5)$	
Leeward parapet:	0.0 psf	$(\mathrm{GCpn}=-1.0)$	

WIND PARALLEL TO RIDGE

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	

Wind Loads - MWFRS $\mathbf{h} \leq \mathbf{6 0}$ ' (Low-rise Buildings) except for open buildings

Base pressure $(\mathrm{qh})=34.6 \mathrm{psf} \quad \mathrm{Kz}=\mathrm{Kh}=1.022$ $(\mathrm{Kd} \mathrm{qh})=29.4 \mathrm{psf}$
$\mathrm{GCpi}=\quad+/-0.18$

Edge Strip (a) = End Lone (2a) =
Zone 2 length =
14.7 ft 29.4 tt 91.8 ft

Wind Pressure Coefficients

Ultimate Wind Surface Pressures (psf)

1	20.5	9.9		-7.9	-18.5
2	-15.0	-25.6			
3	-8.5	-19.1		-15.0	-25.6
4	-6.9	-17.5	-5.6	-16.2	
5			-7.9	-18.5	
6	28.2	17.6	17.1	6.5	
1 E	-26.2	-36.8	-3.2	-13.8	
2 E	-14.5	-25.1	-8.8	-19.4	
3 E	-12.9	-23.5	-26.2	-36.8	
4 E			-10.3	-20.9	
5 E		-8.8	-19.4		
6 E			23.2	12.6	

Parapet

Windward parapet = Leeward parapet =
$0.0 \mathrm{psf} \quad(\mathrm{GCpn}=+1.5)$
$0.0 \mathrm{psf} \quad(\mathrm{GCpn}=-1.0)$

Horizontal MWFRS Simple Diaphragm Pressures (psf)

Transverse direction (normal to L)

Interior Zone: Wall	27.4 psf
Roof	$-6.5 \mathrm{psf}{ }^{* *}$
End Zone: Wall	41.1 psf
Roof	$-11.7 \mathrm{psf}{ }^{* *}$

Longitudinal direction (parallel to L)

Interior Zone: Wall 20.3 psf
End Zone: Wall 30.6 psf
${ }^{* *}$ NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

JOB NO.
CALCULATED BY
SHEET NO.
DATE

DATE CHECKED BY DATE

NOTE: Torsional loads are 25% of zones 1-6.
Exception: One story buildings $\mathrm{h}<30^{\prime}$ and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-98 \& ASCE 7-10 (\& later) - MWFRS wind pressure zones

NOTE: Torsional loads are 25% of zones 1 - 4 . See code for loading diagram.
Exception: One story buildings $\mathrm{h}<30$ ' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones

